• •
肖晓琳1,2, 王玉祥1,2, 谷佩洋1,2, 朱圳荣1,2, 孙勇1,2
收稿日期:
2024-12-04
修回日期:
2025-01-09
通讯作者:
孙 勇, 研究员. E-mail: sunyong8702@scu.edu.cn
作者简介:
肖晓琳(2001-), 女, 硕士研究生 E-mail: xiaolin203232@163.com
基金资助:
XIAO Xiaolin1,2, WANG Yuxiang1,2, GU Peiyang1,2, ZHU Zhenrong1,2, SUN Yong1,2
Received:
2024-12-04
Revised:
2025-01-09
Contact:
SUN Yong, professor. E-mail: sunyong8702@scu.edu.cn
About author:
XIAO Xiaolin (2001-), female, master. E-mail: xiaolin203232@163.com
Supported by:
摘要: 二维无机材料作为一类具有单原子层或几层原子层的无机超薄纳米片,呈现出高比表面积、高导电性和/或高光热转换效率等特点。这些独特的理化特性赋予其促凝血、抗菌、抗炎和抗氧化的生物学效应。近年来,鉴于降解和代谢问题,该类材料被探索应用于调控病损皮肤组织,如全层皮肤缺损、烧烫伤及糖尿病创面等,展现出加速伤口愈合、减轻感染及改善炎症微环境的显著效果。本文围绕二维无机材料的特有结构和生物效应,系统性阐述其在伤口愈合中的应用及相关作用机制,并展望了目前二维无机材料在皮肤修复领域所面临的挑战和前景。
中图分类号:
肖晓琳, 王玉祥, 谷佩洋, 朱圳荣, 孙勇. 二维无机材料调控病损皮肤组织再生的研究进展[J]. 无机材料学报, DOI: 10.15541/jim20240508.
XIAO Xiaolin, WANG Yuxiang, GU Peiyang, ZHU Zhenrong, SUN Yong. Advances in Regulation of Damaged Skin Regeneration by Two-dimensional Inorganic Materials[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240508.
[1] AIJUN W, MIN Z, YUFANG Z.Copper-incorporated calcium silicate nanorods composite hydrogels for tumor therapy and skin wound healing.Journal of Inorganic Materials, 2022, 37(11): 1203. [2] HANG Z, KUNYUAN H, LANLAN D, et al. Preparation and characterization of β-tricalcium phosphate/nano clay composite scaffolds via digital light processing printing. Journal of Inorganic Materials, 2022. [3] JIXIANG S, DONG Z, MIN Z, et al. Preparation and characterization of bioactive glass-manganese dioxide composite scaffolds. Journal of Inorganic Materials, 2022, 37(4): 427. [4] 杜琳, 薛健民, 郇志广等. 含钼的硅酸盐生物陶瓷释放的化学离子对肌腱-骨相关的多细胞调控.化学学报, 2023, 81(10): 1334. [5] BAO F, CHANG J.Calcium silicate nanowires based composite electrospun scaffolds: preparation, ion release and cytocompatibility.Journal of Inorganic Materials, 2021, 36(11): 1199. [6] ZHU Y, ZHANG X, CHANG G, et al. Bioactive glass in tissue regeneration: unveiling recent advances in regenerative strategies and applications. Advanced Materials, 2024: 2312964. [7] WU R, ZHANG M, JIN C, et al. Photothermal core-shell TiN@Borosilicate bioglass nanoparticles: degradation and mineralization. Journal of Inorganic Materials, 2023, 38(6): 708. [8] WU C, CHANG J.Silicate bioceramics for bone tissue regeneration: silicate bioceramics for bone tissue regeneration.Journal of Inorganic Materials, 2013, 28: 29. [9] GUO Y, XU K, WU C, et al. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chemical Society Reviews, 2015, 44(3): 637. [10] YANG B, CHEN Y, SHI J.Material chemistry of two-dimensional inorganic nanosheets in cancer theranostics.Chem, 2018, 4(6): 1284. [11] TAN A Y S, LO N W, CHENG F, et al. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosensors and Bioelectronics, 2023, 219: 114811. [12] SAKTHIVEL R, KEERTHI M, CHUNG R-J, et al. Heterostructures of 2D materials and their applications in biosensing. Progress in Materials Science, 2023, 132: 101024. [13] BAI Z, ZHAO L, BAI Y, et al. Research progress on MXenes: preparation, property and application in tumor theranostics. Journal of Inorganic Materials, 2022, 37(4): 361. [14] LIU S, PAN X, LIU H.Two-dimensional nanomaterials for photothermal therapy.Angewandte Chemie International Edition, 2020, 59(15): 5890. [15] WANG X, MA B, XUE J, et al. Defective black nano-titania thermogels for cutaneous tumor-induced therapy and healing. Nano Letters, 2019, 19(3): 2138. [16] PENG G, FADEEL B.Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system.Advanced Drug Delivery Reviews, 2022, 188: 114422. [17] CHANG T-H, LI K, YANG H, et al. Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities. Advanced Materials, 2018, 30(47): 1802418. [18] KIM J, LEE Y, KANG M, et al. 2D Materials for skin-mountable electronic devices. Advanced Materials, 2021, 33(47): 2005858. [19] KIM H S, SUN X, LEE J-H, et al. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Advanced Drug Delivery Reviews, 2019, 146: 209. [20] OLSSON M, JäRBRINK K, DIVAKAR U, et al. The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair and Regeneration, 2019, 27(1): 114. [21] PEñA O A, MARTIN P. Cellular and molecular mechanisms of skin wound healing.Nature Reviews Molecular Cell Biology, 2024, 25(8): 599. [22] XUE M, ZHAO R, LIN H, et al. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Advanced Drug Delivery Reviews, 2018, 129: 219. [23] TU C, LU H, ZHOU T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials, 2022, 286: 121597. [24] WANG G, YANG F, ZHOU W, et al. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomedicine & Pharmacotherapy, 2023, 157: 114004. [25] PEREIRA R F, BARRIAS C C, GRANJA P L, et al. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine, 2013, 8(4): 603. [26] ZHAO J, LI T, YUE Y, et al. Advancements in employing two-dimensional nanomaterials for enhancing skin wound healing: a review of current practice. Journal of Nanobiotechnology, 2024, 22(1): 520. [27] TU Y, LV M, XIU P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 2013, 8(8): 594. [28] RASOOL K, HELAL M, ALI A, et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 2016, 10(3): 3674. [29] AKHAVAN O, GHADERI E.Toxicity of graphene and graphene oxide nanowalls against bacteria.ACS Nano, 2010, 4(10): 5731. [30] PULINGAM T, THONG K L, APPATURI J N,et al. Mechanistic actions and contributing factors affecting the antibacterial property and cytotoxicity of graphene oxide. Chemosphere, 2021, 281: 130739. [31] SONG W, WANG D, XIAO S, et al. NIR-II-amplify high-entropy MXene-based sonosensitizer as sonodynamic therapy promotes methicillin-resistant Staphylococcus aureus-Infected wound healing. Materials & Design, 2024, 240: 112857. [32] SEIDI F, ARABI S A, DADASHI FIROUZJAEI M,et al. MXenes antibacterial properties and applications: a review and perspective. Small, 2023, 19(14): e2206716. [33] WANG T, SUN X, GUO X,et al. Ultraefficiently calming cytokine storm using Ti3C2T MXene. Small Methods, 2021, 5(5): 2001108. [34] CAI Q, LI L H, MATETI S, et al. Boron nitride nanosheets: thickness-related properties and applications. Advanced Functional Materials, 2024, 34(40): 2403669. [35] CHUNG J-Y, YUAN Y, MISHRA T P, et al. Structure and exfoliation mechanism of two-dimensional boron nanosheets. Nature Communications, 2024, 15(1): 6122. [36] ALI S, RAZA A, AFZAL A M, et al. Recent advances in 2D-MXene based nanocomposites for optoelectronics. Advanced Materials Interfaces, 2022, 9(31): 2200556. [37] SO Y, YIM D, SON W, et al. Deciphering the therapeutic mechanism of topical WS2 nanosheets for the effective therapy of burn injuries. Applied Materials Today, 2022, 29: 101591. [38] BANERJEE A N.Graphene and its derivatives as biomedical materials: future prospects and challenges.Interface Focus, 2018, 8(3): 20170056. [39] SHARIATI A, HOSSEINI S M, CHEGINI Z, et al. Graphene-based materials for inhibition of wound infection and accelerating wound healing. Biomedicine & Pharmacotherapy, 2023, 158: 114184. [40] HUANG H, FENG W, CHEN Y.Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications.Chemical Society Reviews, 2021, 50(20): 11381. [41] ZHANG B, HE J, SHI M, et al. Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chemical Engineering Journal, 2020, 400: 125994. [42] MARCO P, LAURA F, VERONICA L,et al. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes.Chemical Scientific Reports, 2017, 7, 40572. [43] YANG K, LI Y, TAN X, et al. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small, 2013, 9(9/10): 1492. [44] SASIDHARAN A, PANCHAKARLA L S, SADANANDAN A R, et al. Hemocompatibility and macrophage response of pristine and functionalized graphene. Small, 2012, 8(8): 1251. [45] LI Y, LIU Y, FU Y, et al. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials, 2012, 33(2): 402. [46] WU N, YANG W, CHE S, et al. Green preparation of high-yield and large-size hydrophilic boron nitride nanosheets by tannic acid-assisted aqueous ball milling for thermal management. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107266. [47] CHEN C, YU B, JIA H,et al. Efficient preparation of hydrophilic boron nitride nanosheets for human heat dissipation applications. ACS Applied Nano Materials, 2024, 7(10): 11487. [48] LV J, QI Y, TIAN Y, et al. Functionalized boron nanosheets with near-infrared-triggered photothermal and nitric oxide release activities for efficient antibacterial treatment and wound healing promotion. Biomaterials Science, 2022, 10(14): 3747. [49] PELEGRINO M T, WELLER R B, CHEN X, et al. Chitosan nanoparticles for nitric oxide delivery in human skin. MedChemComm, 2017, 8(4): 713. [50] CARPENTER A W, SCHOENFISCH M H.Nitric oxide release: part II. therapeutic applications.Chemical Society Reviews, 2012, 41(10): 3742. [51] LIU Y, QIU Z, CARVALHO A,et al. Gate-tunable giant stark effect in few-layer black phosphorus. Nano Letters, 2017, 17(3): 1970. [52] MAO C, XIANG Y, LIU X, et al. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano, 2018, 12(2): 1747. [53] GE J, LAN M, ZHOU B, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 2014, 5(1): 4596. [54] WALIA S, BALENDHRAN S, AHMED T, et al. Ambient protection of gew-layer black phosphorus via sequestration of reactive oxygen species. Advanced Materials, 2017, 29(27): 1700152. [55] TONG L, LIAO Q, ZHAO Y, et al. Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant. Biomaterials, 2019, 193: 1. [56] DING Q, SUN T, SU W, et al. Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: a stepwise countermeasure for diabetic skin wound healing. Advanced Healthcare Materials, 2022, 11(12): 2102791. [57] LUO X, ZHANG L, LUO Y,et al. Charge-driven self-assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Advanced Functional Materials, 2023, 33(26): 2214036. [58] SHAO J, XIE H, HUANG H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7(1): 12967. [59] WANG H, YANG X, SHAO W, et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. Journal of the American Chemical Society, 2015, 137(35): 11376. [60] LV R, ROBINSON J A, SCHAAK R E, et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Accounts of Chemical Research, 2015, 48(1): 56. [61] LIN Y-C, DUMCENCO D O, HUANG Y-S, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nature Nanotechnology, 2014, 9(5): 391. [62] ZHANG H.Ultrathin two-dimensional nanomaterials.ACS Nano, 2015, 9(10): 9451-9469. [63] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271. [64] SUN Y, LI Y, DING X, et al. An NIR-responsive hydrogel loaded with polydeoxyribonucleotide nano-vectors for enhanced chronic wound healing. Biomaterials, 2025, 314: 122789. [65] ZHAO Y, XU J, JIANG X.DNA cleavage by chemically exfoliated molybdenum disulfide nanosheets.Environmental Science & Technology, 2021, 55(6): 4037. [66] WANG P, WU J, XIAO X, et al. Engineering injectable coassembled hydrogel by photothermal driven chitosan-stabilized MoS2 nanosheets for infected wound healing. ACS Nano, 2024, 10.1021/acsnano.4c08883. [67] LI L, CHENG Q.Recent advances in the high performance MXenes nanocomposites.Journal of Inorganic Materials, 2024, 39(2): 153. [68] BARSOUM M W.The MN+1AXN phases: A new class of solids: thermodynamically stable nanolaminates.Progress in Solid State Chemistry, 2000, 28(1): 201. [69] LI Y, FU R, DUAN Z, et al. Artificial nonenzymatic antioxidant MXene aanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano, 2022, 16(5): 7486. [70] REN X, HUO M, WANG M, et al. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano, 2019, 13(6): 6438. [71] WU Y, ZHENG W, XIAO Y,et al. Multifunctional, robust, and porous PHBV-GO/MXene composite membranes with good hydrophilicity, antibacterial activity, and platelet adsorption performance. Polymers (Basel), 2021, 13(21): 3748. [72] LUO R, DAI J, ZHANG J,et al. Accelerated skin wound healing by electrical stimulation. Advanced Healthcare Materials, 2021, 10(16): 2100557. [73] VERDES M, MACE K, MARGETTS L,et al. Status and challenges of electrical stimulation use in chronic wound healing. Current Opinion in Biotechnology, 2022, 75: 102710. [74] ZHENG H, WANG S, CHENG F, et al. Bioactive anti-inflammatory, antibacterial, conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy. Chemical Engineering Journal, 2021, 424: 130148. [75] LI D, HU X, ZHANG S.Biodegradation of graphene-based nanomaterials in blood plasma affects their biocompatibility, drug delivery, targeted organs and antitumor ability.Biomaterials, 2019, 202: 12. [76] HAO J, SONG G, LIU T, et al. In vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal dichalcogenides MS2(M = Mo, W, Ti) nanosheets. Advanced Science, 2017, 4(1): 1600160. [77] MA B, MARTíN C, KURAPATI R,et al. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chemical Society Reviews, 2020, 49(17): 6224. [78] ZHANG S, ZHANG X, LEI L, et al. pH-dependent degradation of layered black phosphorus: essential role of hydroxide Ions. Angewandte Chemie International Edition, 2019, 58(2): 467. [79] PATON K R, VARRLA E, BACKES C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13(6): 62. [80] TANG L, TAN J, NONG H, et al. Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Accounts of Materials Research, 2021, 2(1): 36. [81] GAO Y, HONG Y-L, YIN L-C, et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Advanced Materials, 2017, 29(29): 1700990. |
[1] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[2] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[3] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[4] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[5] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[6] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[7] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[8] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[9] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[10] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[11] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[12] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[13] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[14] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[15] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||