• 综述 •
王宇彤1, 常江2, 徐合1, 吴成铁2
收稿日期:
2025-01-09
修回日期:
2025-02-19
作者简介:
王宇彤(2001-), 女, 硕士研究生. E-mail: 1000566516@smail.shnu.edu.cn
基金资助:
WANG Yutong1, CHANG Jiang2, XU He1, WU Chengtie2
Received:
2025-01-09
Revised:
2025-02-19
About author:
WANG Yutong (2001-), female, Master candidate. E-mail: 1000566516@smail.shnu.edu.cn
Supported by:
摘要: 大面积皮肤创伤是全球公共卫生最具挑战性的问题之一,其修复与治疗给医疗保健系统造成了巨大的经济负担,亟需开发能够促进创面皮肤组织再生的高效伤口敷料。近年来,硅酸盐生物陶瓷/玻璃因具备促进血管再生、刺激细胞胶原蛋白沉积以及抗感染等多重优势,在创面修复领域得到了广泛的关注与应用。本文简要概述了硅酸盐生物陶瓷/玻璃在皮肤再生过程中的作用机制,介绍了硅酸盐生物陶瓷/玻璃材料和一些新技术的结合方法及其在创面修复领域的相关应用,最后总结了硅酸盐生物陶瓷/玻璃的优势与局限性,为硅酸盐生物陶瓷/玻璃材料在创面修复领域的临床应用提供参考。
中图分类号:
王宇彤, 常江, 徐合, 吴成铁. 硅酸盐生物陶瓷/玻璃促创面修复的研究进展:作用、机制和应用方式[J]. 无机材料学报, DOI: 10.15541/jim20250014.
WANG Yutong, CHANG Jiang, XU He, WU Chengtie. Advances in Silicate Bioceramic/Glass for Wound Healing: Effects, Mechanisms and Application Ways[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250014.
[1] SANJARNIA P, PICCHIO M L, POLEGRE SOLIS A N, et al. Bringing innovative wound care polymer materials to the market: challenges, developments, and new trends. Advanced Drug Delivery Reviews, 2024, 207: 115217. [2] RAZIYEVA K, KIM Y, ZHARKINBEKOV Z, et al. Immunology of acute and chronic wound healing. Biomolecules, 2021, 11(5): 700. [3] SEN C K.Human wounds and its burden: an updated compendium of estimates.Advances in Wound Care, 2019, 8(2): 39. [4] WU M, GAO B B, WEI X B.Recent advances in Raman spectroscopy for skin diagnosis.Journal of Innovative Optical Health Sciences, 2023, 16(03): 2330003. [5] SHANG F, LU Y H, GAO J, et al. Comparison of therapeutic effects between artificial dermis combined with autologous split-thickness skin grafting and autologous intermediate-thickness skin grafting alone in severely burned patients: a prospective randomised study. International Wound Journal, 2021, 18(1): 24. [6] FAN C, XU Q, HAO R Q, et al. Multi-functional wound dressings based on silicate bioactive materials. Biomaterials, 2022, 287: 121652. [7] WANG L L, ZHAO R, LI J Y, et al. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing. European Journal of Pharmacology, 2016, 786: 128. [8] YU Q Q, CHANG J, WU C T.Silicate bioceramics: from soft tissue regeneration to tumor therapy.Journal of Materials Chemistry B, 2019, 7(36): 5449. [9] LI H Y, CHANG J.Stimulation of proangiogenesis by calcium silicate bioactive ceramic.Acta Biomaterialia, 2013, 9(2): 5379. [10] LI H, CHANG J.Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect.Acta Biomaterialia, 2013, 9(6): 6981. [11] ZHAI W Y, LU H X, CHEN L, et al. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomaterialia, 2012, 8(1): 341. [12] LI B M, HU W Z, MA K, et al. Are hair follicle stem cells promising candidates for wound healing? Expert Opinion on Biological Therapy, 2019, 19(2): 119. [13] WU Y K, CHENG N C, CHENG C M.Biofilms in chronic wounds: pathogenesis and diagnosis.Trends in Biotechnology, 2019, 37(5): 505. [14] LAXMINARAYAN R, SRIDHAR D, BLASER M, et al. Achieving global targets for antimicrobial resistance. Science, 2016, 353(6302): 874. [15] HU S, CHANG J, LIU M Q, et al. Study on antibacterial effect of 45S5 Bioglass®. Journal of Materials Science-Materials in Medicine, 2009, 20(1): 281. [16] ZHANG E L, WANG X Y, CHEN M, et al. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Materials Science & Engineering C-Materials for Biological Applications, 2016, 69: 1210. [17] REWAK-SOROCZYNSKA J, DOROTKIEWICZ-JACH A, DRULIS-KAWA Z, et al. Culture media composition influences the antibacterial effect of silver, cupric, and zinc ions against pseudomonas aeruginosa. Biomolecules, 2022, 12(7): 963. [18] RAF A, YE J W, ZHANG S Q, et al. Copper(ii)-based coordination polymer nanofibers as a highly effective antibacterial material with a synergistic mechanism. Dalton Transactions, 2019, 48(48): 17810. [19] YANG T T, WANG D H, LIU X Y.Antibacterial activity of an NIR-induced Zn ion release film.Journal of Materials Chemistry B, 2020, 8(3): 406. [20] KERAYECHIAN N, MARDANY A, BAHRAINI F, et al. Evaluation of the antibacterial effects of the various nanoparticles coated orthodontic brackets: a systematic review and meta-analysis br. Medicina Balear, 2023, 38(3): 107 [21] LI J Y, ZHAI D, LV F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomaterialia, 2016, 36: 254. [22] LI Y H, HAN Y, WANG X Y, et al. Multifunctional hydrogels prepared by dual ion cross-linking for chronic wound healing. ACS Applied Materials & Interfaces, 2017, 9(19): 16054. [23] JOHNSON A P, SABU C, NIVITHA K P, et al. Bioinspired and biomimetic micro- and nanostructures in biomedicine. Journal of Controlled Release, 2022, 343: 724. [24] WANG B, ZHAO J Y, LU W X, et al. The preparation of lactoferrin/magnesium silicate lithium injectable hydrogel and application in promoting wound healing. International Journal of Biological Macromolecules, 2022, 220: 1501. [25] GRANEY P L, BEN-SHAUL S, LANDAU S,#magtechI#et al. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Science Advances, 2020, 6(18): eaay6391. [26] XU P, XING M, HUANG H Z, et al. Calcium silicate-human serum albumin composite hydrogel decreases random pattern skin flap necrosis by attenuating vascular endothelial cell apoptosis and inflammation. Chemical Engineering Journal, 2021, 423: 130285. [27] HUANG Y, WU C T, ZHANG X L, et al. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Acta Biomaterialia, 2018, 66: 81. [28] WANG H N, YU H Q, ZHOU X, et al. An overview of extracellular matrix-based bioinks for 3D bioprinting. Frontiers in Bioengineering and Biotechnology, 2022, 10: 905438. [29] GARDEAZABAL L, IZETA A.Elastin and collagen fibres in cutaneous wound healing.Experimental Dermatology, 2024, 33(3): e15052. [30] CAO Z, WANG X Y, JIANG C Q, et al. Thermo-sensitive hydroxybutyl chitosan/diatom biosilica hydrogel with immune microenvironment regulatory for chronic wound healing. International Journal of Biological Macromolecules, 2024, 262: 130189. [31] QUE Y M, ZHANG Z W B, ZHANG Y X, et al. Silicate ions as soluble form of bioactive ceramics alleviate aortic aneurysm and dissection. Bioactive Materials, 2023, 25: 716. [32] REFFITT D M, OGSTON N, JUGDAOHSINGH R, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone, 2003, 32(2): 127. [33] LV F, WANG J, XU P, et al. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomaterialia, 2017, 60: 128. [34] LIN F S, LEE J J, LEE A K X, et al. Calcium silicate-activated gelatin methacrylate hydrogel for accelerating human dermal fibroblast proliferation and differentiation. Polymers, 2021, 13(1): 70. [35] NOSRATI H, KHOUY R A, NOSRATI A, et al. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. Journal of Nanobiotechnology, 2021, 19(1): 1. [36] DASHNYAM K, JIN G Z, KIM J H, et al. Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials, 2017, 116: 145. [37] YU J, XU Y Z, ZHANG Z W B, et al. Strontium zinc silicate bioceramic composite electrospun fiber membrane for hair follicle regeneration in burn wounds. Composites Part B-Engineering, 2023, 266: 110953. [38] LIU Y Q, LI T, MA H S, et al. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta Biomaterialia, 2018, 73: 531. [39] YU Q Q, HAN Y M, TIAN T, et al. Chinese sesame stick-inspired nano-fibrous scaffolds for tumor therapy and skin tissue reconstruction. Biomaterials, 2019, 194: 25. [40] MEHRABI T, MESGAR A S, MOHAMMADI Z.Bioactive glasses: a promising therapeutic on release strategy for enhancing wound healing.Acs Biomaterials Science & Engineering, 2020, 6(10): 5399. [41] SHAO H J, WU X, DENG J J, et al. Application and progress of inorganic composites in haemostasis: a review. Journal of Materials Science, 2024, 59(17): 7169. [42] LIU C Y, CUI X, DU Y B, et al. Unusual surface coagulation activation patterns of crystalline and amorphous silicate-based biominerals. Advanced Healthcare Materials, 2023, 12(20): 2300039. [43] ZHENG C Y, LIU J X, BAI Q, et al. Preparation and hemostatic mechanism of bioactive glass-based membrane-like structure camouflage composite particles. Materials & Design, 2022, 223: 111116. [44] WANG Y D, LUO M, LI T, et al. Multi-layer-structured bioactive glass nanopowder for multistage-stimulated hemostasis and wound repair. Bioactive Materials, 2023, 25: 319. [45] GUO B L, DONG R N, LIANG Y P, et al. Haemostatic materials for wound healing applications. Nature Reviews Chemistry, 2021, 5(11): 773. [46] MATAI I, KAUR G, SEYEDSALEHI A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020, 226: 119536. [47] YAN W C, DAVOODI P, VIJAYAVENKATARAMAN S, et al. 3D bioprinting of skin tissue: from pre-processing to final product evaluation. Advanced Drug Delivery Reviews, 2018, 132: 270. [48] MA J G, QIN C, WU J F, et al. 3D printing of strontium silicate microcylinder-containing multicellular biomaterial inks for vascularized skin regeneration. Advanced Healthcare Materials, 2021, 10(16): 2100523. [49] ZHOU F F, HONG Y, LIANG R J, et al. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials, 2020, 258: 120287. [50] MA H S, FENG C, CHANG J, et al. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomaterialia, 2018, 79: 37. [51] MA J G, QIN C, WU J F, et al. 3D multicellular micropatterning biomaterials for hair regeneration and vascularization. Materials Horizons, 2023, 10(9): 3773. [52] XU H, LV F, ZHANG Y L, et al. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing. Nanoscale, 2015, 7(44): 18446. [53] ZHANG J P, ZENG Z, CHEN Y X,#magtechI#et al. 3D-printed GelMA/CaSiO3 composite hydrogel scaffold for vascularized adipose tissue restoration. Regenerative Biomaterials, 2023, 10: rbad049. [54] ZHOU Y L, GAO L, PENG J L, et al. Bioglass activated albumin hydrogels for wound healing. Advanced Healthcare Materials, 2018, 7(16): 1800144. [55] MA W P, ZHENG Y, YANG G Z, et al. A bioactive calcium silicate nanowire-containing hydrogel for organoid formation and functionalization. Materials Horizons, 2024, 11(12): 2957. [56] TEHRANY P M, RAHMANIAN P, REZAEE A, et al. Multifunctional and theranostic hydrogels for wound healing acceleration: an emphasis on diabetic-related chronic wounds. Environmental Research, 2023, 238: 117087. [57] BAI Q, TENG L, ZHANG X L, et al. Multifunctional single-component polypeptide hydrogels: the gelation mechanism, superior biocompatibility, high performance hemostasis, and scarless wound healing. Advanced Healthcare Materials, 2022, 11(6): 2101809. [58] ZENG Q Y, HAN Y, LI H Y, et al. Design of a thermosensitive bioglass/agarose-alginate composite hydrogel for chronic wound healing. Journal of Materials Chemistry B, 2015, 3(45): 8856. [59] HAN Y, LI Y H, ZENG Q Y, et al. Injectable bioactive akermanite/alginate composite hydrogels for in situ skin tissue engineering. Journal of Materials Chemistry B, 2017, 5(18): 3315. [60] MA H S, ZHOU Q, CHANG J, et al. Grape seed-inspired smart hydrogel scaffolds for melanoma therapy and wound healing. ACS Nano, 2019, 13(4): 4302. [61] ZARACA F, VACCARILI M, ZACCAGNA G, et al. Can a standardised ventilation mechanical test for quantitative intraoperative air leak grading reduce the length of hospital stay after video-assisted thoracoscopic surgery lobectomy? Journal of visualized surgery, 2017, 3(12): 179. [62] CHEN Y J, QIU Y Y, WANG Q Q, et al. Mussel-inspired sandwich-like nanofibers/hydrogel composite with super adhesive, sustained drug release and anti-infection capacity. Chemical Engineering Journal, 2020, 399: 125668. [63] PLEGUEZUELOS-BELTRáN P, GáLVEZ-MARTíN P, NIETO-GARCíA D, et al. Advances in spray products for skin regeneration. Bioactive Materials, 2022, 16: 187. [64] MA W P, MA H S, QIU P F, et al. Sprayable β-FeSi2 composite hydrogel for portable skin tumor treatment and wound healing. Biomaterials, 2021, 279: 121225. [65] DONG X, CHANG J, LI H Y.Bioglass promotes wound healing through modulating the paracrine effects between macrophages and repairing cells.Journal of Materials Chemistry B, 2017, 5(26): 5240. [66] XU S X, ZHANG Y T, DAI B Y, et al. Green‐prepared magnesium silicate sprays enhance the repair of burn‐skin wound and appendages regeneration in rats and minipigs. Advanced Functional Materials, 2023, 34(9): 2307439. [67] JOHN J V, MCCARTHY A, KARAN A, et al. Electrospun nanofibers for wound management. Chemnanomat, 2022, 8(7): e202100349. [68] BAO F, CHANG J.Calcium silicate nanowires based composite electrospun scaffolds: preparation, ion release and cytocompatibility.Journal of Inorganic Materials, 2021, 36(11): 1199. [69] JIANG Y Q, HAN Y M, WANG J, et al. Space-oriented nanofibrous scaffold with silicon-doped amorphous calcium phosphate nanocoating for diabetic wound healing. ACS Applied Bio Materials, 2019, 2(2): 787. |
[1] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[2] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[3] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[4] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[5] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[6] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[7] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[8] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[9] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[10] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[11] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[12] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[13] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
[14] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[15] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||