无机材料学报 ›› 2025, Vol. 40 ›› Issue (6): 587-608.DOI: 10.15541/jim20240521
收稿日期:
2024-12-17
修回日期:
2025-02-24
出版日期:
2025-06-20
网络出版日期:
2025-02-19
通讯作者:
刘小强, 教授. E-mail: xqliu@zju.edu.cn作者简介:
张碧辉(1996-), 女, 讲师. E-mail: zhangbh@cqut.edu.cn
基金资助:
ZHANG Bihui1,2,3(), LIU Xiaoqiang2,4(
), CHEN Xiangming2
Received:
2024-12-17
Revised:
2025-02-24
Published:
2025-06-20
Online:
2025-02-19
Contact:
LIU Xiaoqiang, professor. E-mail: xqliu@zju.edu.cnAbout author:
ZHANG Bihui (1996-), female, lecturer. E-mail: zhangbh@cqut.edu.cn
Supported by:
摘要:
杂化非常规铁电性(Hybrid Improper Ferroelectricity, HIF)指的是在含钙钛矿结构单元的化合物中, 通过阴离子八面体面内旋转和面外倾侧耦合而产生的二阶铁电序。HIF有望在强磁电耦合多铁性材料中获得重要应用, 并极大地拓展铁电体物理学的内涵和外延。本文总结了Ruddlesden-Popper(R-P)结构HIF的实验研究进展, 建立了双层R-P结构铁电体的居里温度(TC)和许容因子(τ)之间的线性关系, 并阐述其HIF物理起源。基于HIF的内禀电控磁性, 在双层R-P铁氧体中观察到室温极性相和弱铁磁相共存, 这一发现具有重要的科学意义。此外, 在A位离子有序三层R-P氧化物中报道的铁电性显著拓宽了HIF的研究广度和深度。尽管R-P结构的HIF的研究已取得显著进展, 但在新材料体系和单相多铁性材料探索方面仍需进一步努力。
中图分类号:
张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608.
ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure[J]. Journal of Inorganic Materials, 2025, 40(6): 587-608.
图1 (a)基于R-P结构的HIF的多功能特性总结; (b)基于Web of Science数据库总结的近年发表的R-P氧化物文章数量
Fig. 1 (a) Summary of multifunctional properties in HIF with R-P structure; (b) Number of articles published on R-P oxides in recent years based on the Web of Science database
图2 (a)常规铁电相变和(b)非常规铁电相变的能量变化[23]
Fig. 2 Energetics of a transition from paraelectric to ferroelectric phase for (a) proper and (b) improper ferroelectric system[23] F represents thermodynamic free energy of the system, η represents atomic polarity displacement, and T represents temperature. The black line represents the free energy of T>TC, and the minimum value of the free energy is at η=0, indicating that it is a paraelectric phase. The red line indicates the free energy of T<TC, and the minimum value of the free energy is at η≠0, indicating that it is a ferroelectric phase. The three lines between black and red indicate the transition state between the paraelectric phase and the ferroelectric phase. Colorful figure is available on website.
图3 R-P结构A′2AB2O7从(a)顺电相到(b)铁电相的对称模分解及(c)铁电相中每层沿a轴的反铁畸变位移(X)及总的铁电极化强度(Ptotal)示意图[25]
Fig. 3 Symmetry mode decomposition of the (a) paraelectric to (b) ferroelectric structure in R-P A′2AB2O7, and (c) representation of anti-ferrodistortive displacements (X) at every layer and total ferroelectric polarization (Ptotal) in ferroelectric structure[25]
图4 (a) A3B2O7 R-P型氧化物的铁电a−a−c+结构; (b) A3B2O7的氧八面体倾转的第一性原理振幅和诱导极性模式(按ABO3结构τ递增排列)[26]
Fig. 4 (a) Ferroelectric a−a−c+ structure of A3B2O7 R-P phase; (b) First principles amplitudes of two octahedral rotations and induced polar mode for a suite of A3B2O7 materials, arranged by increasing τ of ABO3 parent[26]
图5 (a, b) (Ca,Sr)3Ti2O7单晶的a0a0c+和a−a−c0两个氧八面体倾转模式的示意图; (c, d) Ca2.46Sr0.54Ti2O7单晶的(c) (001)解理表面照片和(d)室温环形差分干涉衬度照片; (e) Ca3−xSrxTi2O7(x=0, 0.54, 0.85)单晶沿[110]方向的电滞回线; (f) IP-PFM的配置示意图[49]
Fig. 5 (a, b) Schematic diagrams of two octahedral tilt modes of a0a0c+and a−a−c0 of (Ca,Sr)3Ti2O7 single crystal; (c) Photographic and (d) circular differential interference contrast image of a cleaved (001) surface of Ca2.46Sr0.54Ti2O7 single crystal; (e) Ferroelectric hysteresis loops of Ca3−xSrxTi2O7 (x=0, 0.54, 0.85) single crystal along [110] orientation; (f) Schematic picture of IP-PFM measurement[49]
Compound | τ | Pr/(μC·cm-2) | Ec/(kV·cm-1) | TC/K | Ref. | |
---|---|---|---|---|---|---|
Ca3Ti2O7 | Ceramic | 0.8465 | 0.9 | 110 | 1085 | [ |
Ca3Ti2O7 | Sol-Gel ceramic | 0.8465 | 4.32 | 108 | 1046 | [ |
Ca3Ti2O7 | Two-step ceramic | 0.8465 | 1.32 | 78 | — | [ |
Ca3Ti2O7 | Film | 0.8465 | 8 | 5 | — | [ |
Ca3Ti2O7 | Single crystal | 0.8465 | 8 | 150 | — | [ |
Ca2.9Sr0.1Ti2O7 | Ceramic | 0.8487 | 0.5 | 210 | 1034 | [ |
Ca2.8Sr0.2Ti2O7 | Ceramic | 0.8508 | 0.2 | 190 | 970 | [ |
Ca2.7Sr0.3Ti2O7 | Ceramic | 0.8529 | 0.12 | 185 | 940 | [ |
Ca2.6Sr0.4Ti2O7 | Ceramic | 0.8550 | 0.1 | 170 | 850 | [ |
Ca2.46Sr0.54Ti2O7 | Single crystal | 0.8580 | 0.54 | 150 | — | [ |
Ca2.15Sr0.85Ti2O7 | Single crystal | 0.8645 | 0.85 | 180 | — | [ |
Ca3Ti1.9Mn0.1O7 | Ceramic | 0.8481 | 0.6 | 122 | 1075 | [ |
Ca3Ti1.8Mn0.2O7 | Ceramic | 0.8497 | 0.4 | 145 | 1030 | [ |
Ca3Ti1.7Mn0.3O7 | Ceramic | 0.8513 | 0.3 | 150 | 1000 | [ |
Ca3Ti1.8Al0.1Nb0.1O7 | Ceramic | 0.8472 | 1.24 | 160 | 1082 | [ |
Ca3Ti1.8Al0.1Nb0.1O7 | Ceramic | 0.8453 | 0.5 | 130 | 1099 | [ |
Ca3Ti1.9Al0.1O6.95 | Ceramic | 0.8480 | 0.5 | 130 | 973 | [ |
Ca2.9La0.1Ti1.9Al0.1O7 | Ceramic | 0.8484 | 0.39 | 115 | 950 | [ |
Ca2.8La0.2Ti1.8Al0.2O7 | Ceramic | 0.8503 | 0.17 | 117 | 797 | [ |
Ca2.7La0.3Ti1.7Al0.3O7 | Ceramic | 0.8521 | 0.16 | 120 | 645 | [ |
Ca2.85Na0.15Ti2O7 | Ceramic | 0.8469 | 0.2 | 50 | — | [ |
Ca2.99Na0.01Ti2O7 | Ceramic | 0.8466 | 0.5 | 80 | — | [ |
Ca2.9Ru0.1Ti2O7 | Ceramic | 0.8428 | 4.4 | 100 | — | [ |
表1 双层R-P结构Ca3Ti2O7基氧化物的铁电性能相关参数[43-44,49,64,70 -73,79 -81]
Table 1 Parameters regarding ferroelectric properties of Ca3Ti2O7-based oxides with double-layered R-P structure[43-44,49,64,70 -73,79 -81]
Compound | τ | Pr/(μC·cm-2) | Ec/(kV·cm-1) | TC/K | Ref. | |
---|---|---|---|---|---|---|
Ca3Ti2O7 | Ceramic | 0.8465 | 0.9 | 110 | 1085 | [ |
Ca3Ti2O7 | Sol-Gel ceramic | 0.8465 | 4.32 | 108 | 1046 | [ |
Ca3Ti2O7 | Two-step ceramic | 0.8465 | 1.32 | 78 | — | [ |
Ca3Ti2O7 | Film | 0.8465 | 8 | 5 | — | [ |
Ca3Ti2O7 | Single crystal | 0.8465 | 8 | 150 | — | [ |
Ca2.9Sr0.1Ti2O7 | Ceramic | 0.8487 | 0.5 | 210 | 1034 | [ |
Ca2.8Sr0.2Ti2O7 | Ceramic | 0.8508 | 0.2 | 190 | 970 | [ |
Ca2.7Sr0.3Ti2O7 | Ceramic | 0.8529 | 0.12 | 185 | 940 | [ |
Ca2.6Sr0.4Ti2O7 | Ceramic | 0.8550 | 0.1 | 170 | 850 | [ |
Ca2.46Sr0.54Ti2O7 | Single crystal | 0.8580 | 0.54 | 150 | — | [ |
Ca2.15Sr0.85Ti2O7 | Single crystal | 0.8645 | 0.85 | 180 | — | [ |
Ca3Ti1.9Mn0.1O7 | Ceramic | 0.8481 | 0.6 | 122 | 1075 | [ |
Ca3Ti1.8Mn0.2O7 | Ceramic | 0.8497 | 0.4 | 145 | 1030 | [ |
Ca3Ti1.7Mn0.3O7 | Ceramic | 0.8513 | 0.3 | 150 | 1000 | [ |
Ca3Ti1.8Al0.1Nb0.1O7 | Ceramic | 0.8472 | 1.24 | 160 | 1082 | [ |
Ca3Ti1.8Al0.1Nb0.1O7 | Ceramic | 0.8453 | 0.5 | 130 | 1099 | [ |
Ca3Ti1.9Al0.1O6.95 | Ceramic | 0.8480 | 0.5 | 130 | 973 | [ |
Ca2.9La0.1Ti1.9Al0.1O7 | Ceramic | 0.8484 | 0.39 | 115 | 950 | [ |
Ca2.8La0.2Ti1.8Al0.2O7 | Ceramic | 0.8503 | 0.17 | 117 | 797 | [ |
Ca2.7La0.3Ti1.7Al0.3O7 | Ceramic | 0.8521 | 0.16 | 120 | 645 | [ |
Ca2.85Na0.15Ti2O7 | Ceramic | 0.8469 | 0.2 | 50 | — | [ |
Ca2.99Na0.01Ti2O7 | Ceramic | 0.8466 | 0.5 | 80 | — | [ |
Ca2.9Ru0.1Ti2O7 | Ceramic | 0.8428 | 4.4 | 100 | — | [ |
图7 (a)室温下利用g=100衍射斑点得到的DF-TEM照片, 红蓝箭头代表沿[100]的铁电极化方向; (b)利用g=220衍射斑点得到的DF-TEM照片; (c) Ca3[Mn0.5(Fe0.5Nb0.5)0.5]2O7陶瓷室温下的PFM测试结果; (d)改变交流电压条件下的一次与二次谐波压电响应图; (e, f)不同直流偏压下的(e)振幅蝴蝶曲线及(f)相位迟滞回线[45]
Fig. 7 (a) DF-TEM image obtained at room temperature (RT) using the g=100 diffraction spot showing the ferroelectric domains, with blue and red arrows indicating directions of ferroelectric polarization along [100]; (b) DF-TEM image obtained at RT using the reflection g=220; (c) PFM measurements for Ca3[Mn0.5(Fe0.5Nb0.5)0.5]2O7 ceramics at RT: mappings of topography, amplitude contrast, phase contrast, and contact resonant frequency; (d) First and second harmonic responses versus AC voltage; (e, f) Local switching spectroscopy for (e) amplitude voltage butterfly loops and (f) phase voltage hysteresis loops under various DC bias[45]
图8 双层R-P结构Sr基氧化物(Sr3Sn2O7单晶[112]、(Sr,Ba)3Sn2O7陶瓷[84]、(Sr,Ca)3Sn2O7陶瓷[85]、(Sr,Ba)3Zr2O7陶瓷[86]、Sr3(Sn,Zr)2O7陶瓷[113])的铁电性能对比
Fig. 8 Comparison of ferroelectric properties for Sr-based oxides with R-P structure (Sr3Sn2O7 single crystal[112], (Sr,Ba)3Sn2O7 ceramics[84], (Sr,Ca)3Sn2O7 ceramics[85], (Sr,Ba)3Zr2O7 ceramics[86], and Sr3(Sn,Zr)2O7 ceramics[113])
图9 (a)根据空间群对称性分析得到Sr3Sn2O7随温度变化的四个相结构[118]; (b)研究建立的Sr3Sn2O7的相图[118]; (c)根据300 K条件下的NPD精修结果计算的晶体结构分层极化(左图), [010]面的晶体结构示意图(右图), 其中Sr、Zr和O原子分别为灰色、蓝色和红色[119]; (d) Sr3Hf2O7中原子和分层极化对宏观极化的贡献, Sr1−O表示钙钛矿层之间的SrO层, Sr2−O表示岩盐层和钙钛矿层之间的SrO层[120]
Fig. 9 (a) Crystal structures of four phases observed experimentally for Sr3Sn2O7, specified by space group symmetry and Glazer tilt notation[118]; (b) Phase diagram of Sr3Sn2O7 established in the present study[118]; (c) Calculated layer-resolved polarization using a point-charge approximation for the crystal structure refined against NPD data at 300 K (left panel), [010] projected crystal structure (right panel) with Sr, Zr, and O atoms in gray, blue, and red, respectively[119]; (d) Atomic contributions and layer-by-layer contributions to polarization in Sr3Hf2O7, in which Sr1-O represents the SrO layer between perovskite layers, and Sr2-O represents the SrO layer between rock-salt and perovskite layers[120]
图11 Li2Sr(Nb1−xTax)2O7氧化物的介电常数与温度的依赖关系以及铁电相变模型[65]
Fig. 11 Dependence of dielectric constant on temperature and ferroelectric phase transition schematic of Li2Sr(Nb1−xTax)2O7 oxides[65]
图12 (a) La2SrSc2O7陶瓷的晶体结构示意图, 室温下的P−E电滞回线和不同A位离子有序度下的DFT计算能量对比[123]; (b) La2Sr(Sc1−xFex)2O7陶瓷在400 kV/cm电场和2 Hz频率下的P−E曲线[121]; (c) La2Sr(Sc1−xFex)2O7陶瓷在150~600 K温度范围内的介电常数的温度依赖性[121]; (d) La2Sr(Sc1−xFex)2O7(x=0.15)陶瓷直流磁化率的温度依赖性, 插图是Curie−Weiss拟合结果[121]; (e) La2Sr(Sc1−xFex)2O7(x=0.15)在不同温度下磁化的等温磁场依赖性[121]
Fig. 12 (a) Crystal structures, room temperature P-E loops and the A-site cation ordering dependence of DFT calculated energy for La2SrSc2O7 ceramics[123]; (b) P-E loops for La2Sr(Sc1−xFex)2O7 ceramics under a electric field of 400 kV/cm and a frequency of 2 Hz[121] ; (c) Temperature dependence of dielectric constant for La2Sr(Sc1−xFex)2O7 ceramics over the temperature range of 150-600 K during heating and cooling processes[121]; (d) Temperature dependence of DC magnetic susceptibility of La2Sr(Sc1−xFex)2O7 (x=0.15) ceramics, with inset showing Curie-Weiss fitting results[121]; (e) Isothermal field dependence of magnetization of La2Sr(Sc1−xFex)2O7 (x=0.15) ceramics at various temperatures[121]
图13 双层R-P材料(Ca3Ti2O7陶瓷[80]、Sr3Sn2O7陶瓷[84]、Sr3Zr2O7陶瓷[86]、Li2CaTa2O7陶瓷[26]、Li2SrNb2O7陶瓷[130])铁电性能的对比
Fig. 13 Comparison of ferroelectric properties of double-layered R-P materials (Ca3Ti2O7 ceramics[80], Sr3Sn2O7 ceramics[84], Sr3Zr2O7 ceramics[86], Li2CaTa2O7 ceramics[26], and Li2SrNb2O7 ceramics[130]) (a) Tolerance factor; (b) Curie temperature; (c) Remnant polarization; (d) Coercive field
图14 (a) (1−x)(CaySr1−y)1.15Tb1.85Fe2O7-xCa3Ti2O7(0≤x≤0.3, y=0.60)的相图; (b)铁电极化与饱和磁化强度随成分的变化; (c)当温度为60和100 K时, 线性磁电耦合系数随成分的变化[136]
Fig. 14 (a) Phase diagram of (1−x)(CaySr1−y)1.15Tb1.85Fe2O7-xCa3Ti2O7 (0≤x≤0.3, y=0.60); (b) Ferroelectric polarization and saturated magnetic moment versus composition; (c) Linear magnetoelectric susceptibility versus composition at 60 and 100 K[136]
图15 (a)单层R-P结构氧化物的晶体结构[143]; (b) HRTiO4和NaRTiO4的插层结构示意图[139]; (c) AASmTiO4和(d) AAEuTiO4的SHG信号随温度升高的变化曲线, 其中AA为Na(黄色圆圈)和K(紫色圆圈)[141]
Fig. 15 (a) Crystal structure of several oxides with single layer R-P structure[143]; (b) Schematic diagram of the intercalation structure of HRTiO4 and NaRTiO4[139]; (c, d) Temperature dependence of SHG for (c) AASmTiO4 and (d) AAEuTiO4 with AA representing Na (yellow circles) and K (purple circles)[141]
图16 (a) 390 kV/cm条件下采用PUND法测得的Li2La2Ti3O10陶瓷的P−E电滞回线和J−E电流密度曲线[149]; (b)基于DFT计算的三层R-P结构Li2La2Ti3O10的不同对称性相对于0 K时能量最低Pc相的能量[149]; (c) PUND法测得的Li2Nd2Ti3O10陶瓷的室温P−E电滞回线[150]; (d) Li2La2Ti3O10(LLTO)和Li2Nd2Ti3O10(LNTO)陶瓷的氧八面体畸变角度θT和θR[150]; (e)基于Rietveld精修的Li2La2Ti3O10陶瓷晶体结构示意图(绿色、棕色和红色球分别代表Li+、La3+和O2−离子, 而Ti4+离子位于氧八面体的中心)[149]; (f)通过玻恩有效电荷方法计算的Li2La2Ti3O10中每一层对应的极化贡献[149]
Fig. 16 (a) Room temperature P−E loop and J−E curves measured at 390 kV/cm by PUND method[149]; (b) Calculated energies for Li2La2Ti3O10 with different crystal symmetries in the triple-layered R-P structure relative to the lowest energy Pc phase at 0 K[149]; (c) Room temperature P−E loops of Li2Nd2Ti3O10 ceramics measured through PUND method[150]; (d) Rotation (θR) and tilt (θT) angles of Li2La2Ti3O10 (LLTO) and Li2Nd2Ti3O10 (LNTO) ceramics, respectively[150]; (e) Schematic diagrams of crystal structures for Li2La2Ti3O10 ceramics based on the Rietveld refinement (the green, brown, and red balls represent Li+, La3+, and O2− ions, respectively, while Ti4+ cations reside in the oxygen octahedra center)[149]; (f) Layer-by-layer contributions to polarization in Li2La2Ti3O10 calculated by the Born effective charge mode[149]
[1] | SCOTT J F. Applications of modern ferroelectrics. Science, 2007, 315(5814): 954. |
[2] | YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotechnology, 2010, 5(2): 143. |
[3] | CHEONG S W, MOSTOVOY M. Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 2007, 6: 13. |
[4] | WANG K F, LIU J M, REN Z F. Multiferroicity: the coupling between magnetic and polarization orders. Advances in Physics, 2009, 58(4): 321. |
[5] | HILL N A. Why are there so few magnetic ferroelectrics? The Journal of Physical Chemistry B, 2000, 104(29): 6694. |
[6] | WANG J, NEATON J B, ZHENG H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299(5613): 1719. |
[7] | DONG S, LIU J M, CHEONG S W, et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 2015, 64(5/6): 519. |
[8] | KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426(6962): 55. |
[9] | GOODENOUGH J B. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Physical Review, 1955, 100(2): 564. |
[10] | MILLIS A J. Lattice effects in magnetoresistive manganese perovskites. Nature, 1998, 392(6672): 147. |
[11] | LEVANYUK A P, SANNIKOV D G. Anomalies in dielectric properties in phase transitions. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 1968, 55: 256. |
[12] | LEVANYUK A P, SANNIKOV D G. Improper ferroelectrics. Uspekhi Fizicheskih Nauk, 1974, 112(4): 561. |
[13] | DVOŘÁK V. Improper ferroelectrics. Ferroelectrics, 1974, 7(1): 1. |
[14] | BOUSQUET E, DAWBER M, STUCKI N, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 2008, 452(7188): 732. |
[15] | BENEDEK N A, FENNIE C J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Physical Review Letters, 2011, 106(10): 107204. |
[16] | ZHANG Y J, WANG J, GHOSEZ P. Unraveling the suppression of oxygen octahedra rotations in A3B2O7 Ruddlesden-Popper compounds: engineering multiferroicity and beyond. Physical Review Letters, 2020, 125(15): 157601. |
[17] | WANG F, GAO H, DE GRAAF C, et al. Switchable Rashba anisotropy in layered hybrid organic-inorganic perovskite by hybrid improper ferroelectricity. npj Computational Materials, 2020, 6: 183. |
[18] | VARIGNON J, BRISTOWE N C, GHOSEZ P. Electric field control of Jahn-Teller distortions in bulk perovskites. Physical Review Letters, 2016, 116(5): 057602. |
[19] | TIAN H, KUANG X Y, MAO A J, et al. Novel type of ferroelectricity in brownmillerite structures: a first-principles study. Physical Review Materials, 2018, 2(8): 084402. |
[20] | STROPPA A, BARONE P, JAIN P, et al. Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal- organic framework. Advanced Materials, 2013, 25(16): 2284. |
[21] | BRUCE A D, COWLEY R A, BURNS G. Structural phase transitions. Physics Today, 1981, 34(12): 58. |
[22] | BRUCE A D. Universal phenomena near structural phase transitions. Ferroelectrics, 1981, 35(1): 43. |
[23] | YOUNG J, STROPPA A, PICOZZI S, et al. Anharmonic lattice interactions in improper ferroelectrics for multiferroic design. Journal of Physics: Condensed Matter, 2015, 27(28): 283202. |
[24] | XU B, WANG D W, ZHAO H J, et al. Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Advanced Functional Materials, 2015, 25(24): 3626. |
[25] | 刘小强, 吴淑雅, 朱晓莉, 等. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, 2018, 67(15): 157503. |
[26] | MULDER A T, BENEDEK N A, RONDINELLI J M, et al. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-Popper compounds. Advanced Functional Materials, 2013, 23(38): 4810. |
[27] | ZHAO H, LIU X, CHEN X M, et al. Effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMnO6 (R=rare-earth ion) double perovskites. Physical Review B, 2014, 90: 195147. |
[28] | SCHAAK R E, MALLOUK T E. Perovskites by design: a toolbox of solid-state reactions. Chemistry of Materials, 2002, 14(4): 1455. |
[29] | BENEDEK N A, RONDINELLI J M, DJANI H, et al. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Transactions, 2015, 44(23): 10543. |
[30] | CHEN X M, XIAO Y, LIU X Q, et al. SrLnAlO4 (Ln=Nd and Sm) microwave dielectric ceramics. Journal of Electroceramics, 2003, 10(2): 111. |
[31] | ISHIDA K, MUKUDA H, KITAOKA Y, et al. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature, 1998, 396: 658. |
[32] | LEE D, LEE H. Controlling oxygen mobility in Ruddlesden- Popper oxides. Materials, 2017, 10(4): 368. |
[33] | SENN M S, BOMBARDI A, MURRAY C A, et al. Negative thermal expansion in hybrid improper ferroelectric Ruddlesden- Popper perovskites by symmetry trapping. Physical Review Letters, 2015, 114(3): 035701. |
[34] | TU D, XU C N, KAMIMURA S, et al. Ferroelectric Sr3Sn2O7: Nd3+: a new multipiezo material with ultrasensitive and sustainable near-infrared piezoluminescence. Advanced Materials, 2020, 32(25): 1908083. |
[35] | RUDDLESDEN S N, POPPER P. New compounds of the K2NIF4 type. Acta Crystallographica, 1957, 10(8): 538. |
[36] | RUDDLESDEN S N, POPPER P. The compound Sr3Ti2O7 and its structure. Acta Crystallographica, 1958, 11(1): 54. |
[37] | RONDINELLI J M, FENNIE C J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Advanced Materials, 2012, 24(15): 1961. |
[38] | TARANCÓN A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 2010, 20(19): 3799. |
[39] | CHRONEOS A, YILDIZ B, TARANCÓN A, et al. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy & Environmental Science, 2011, 4(8): 2774. |
[40] | ZHANG B H, LIU X Q, CHEN X M. Review of experimental progress of hybrid improper ferroelectricity in layered perovskite oxides. Journal of Physics D: Applied Physics, 2022, 55(11): 113001. |
[41] | LI C F, ZHENG S H, WANG H W, et al. Structural transitions in hybrid improper ferroelectric Ca3Ti2O7 tuned by site-selective isovalent substitutions: a first-principles study. Physical Review B, 2018, 97(18): 184105. |
[42] | GAO B, HUANG F T, WANG Y Z, et al. Interrelation between domain structures and polarization switching in hybrid improper ferroelectric Ca3(Mn, Ti)2O7. Applied Physics Letters, 2017, 110(22): 222906. |
[43] | LIU X Q, WU J W, SHI X X, et al. Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti, Mn)2O7 ceramics. Applied Physics Letters, 2015, 106(20): 202903. |
[44] | ZHANG B H, HU Z Z, CHEN B H, et al. Improved hybrid improper ferroelectricity in B-site substituted Ca3Ti2O7 ceramics with a Ruddlesden-Popper structure. Journal of Applied Physics, 2020, 128(5): 054102. |
[45] | CHEN B H, SUN T L, WEI L Y, et al. Enhanced hybrid improper ferroelectricity in Fe/Nb cosubstituted Ca3Mn2O7 ceramics. Journal of the American Ceramic Society, 2021, 104(8): 4000. |
[46] | ELCOMBE M M, KISI E H, HAWKINS K D, et al. Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7. Acta Crystallographica Section B Structural Science, 1991, 47(3): 305. |
[47] | GUIBLIN N, GREBILLE D, LELIGNY H, et al. Ca3Mn2O7. Acta Crystallographica Section C, 2002, 58(1): i3. |
[48] | LOBANOV M V, GREENBLATT M, CASPI E A N, et al. Crystal and magnetic structure of the Ca3Mn2O7Ruddlesden- Popper phase: neutron and synchrotron X-ray diffraction study. Journal of Physics: Condensed Matter, 2004, 16(29): 5339. |
[49] | OH Y S, LUO X, HUANG F T, et al. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nature Materials, 2015, 14(4): 407. |
[50] | MEIER D, SEIDEL J, CANO A, et al. Anisotropic conductance at improper ferroelectric domain walls. Nature Materials, 2012, 11(4): 284. |
[51] | GAO P, BRITSON J, JOKISAARI J R, et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nature Communications, 2013, 4: 2791. |
[52] | WU W D, HORIBE Y, LEE N, et al. Conduction of topologically protected charged ferroelectric domain walls. Physical Review Letters, 2012, 108(7): 077203. |
[53] | GUREEV M Y, TAGANTSEV A K, SETTER N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Physical Review B, 2011, 83(18): 184104. |
[54] | HUANG X R, HU X B, JIANG S S, et al. Theoretical model of 180° domain-wall structures and their transformation in ferroelectric perovskites. Physical Review B, 1997, 55(9): 5534. |
[55] | KURUSHIMA K, YOSHIMOTO W, ISHII Y, et al. Direct observation of charged domain walls in hybrid improper ferroelectric (Ca, Sr)3Ti2O7. Japanese Journal of Applied Physics, 2017, 56(10S): 10PB02. |
[56] | SMITH K A, NOWADNICK E A, FAN S, et al. Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca3Ti2O7. Nature Communications, 2019, 10: 5235. |
[57] | LEE M H, CHANG C P, HUANG F T, et al. Hidden antipolar order parameter and entangled Néel-type charged domain walls in hybrid improper ferroelectrics. Physical Review Letters, 2017, 119(15): 157601. |
[58] | NAKAJIMA H, SHIGEMATSU K, HORIBE Y, et al. Charged domain walls and crystallographic microstructures in hybrid improper ferroelectric Ca3-xSrxTi2O7. Materials Transactions, 2019, 60(10): 2103 |
[59] | MUNRO J M, AKAMATSU H, PADMANABHAN H, et al. Discovering minimum energy pathways via distortion symmetry groups. Physical Review B, 2018, 98(8): 085107. |
[60] | NOWADNICK E A, FENNIE C J. Domains and ferroelectric switching pathways in Ca3Ti2O7 from first principles. Physical Review B, 2016, 94(10): 104105. |
[61] | HUANG F T, GAO B, KIM J W, et al. Topological defects at octahedral tilting plethora in bi-layered perovskites. npj Quantum Materials, 2016, 1: 16017. |
[62] | KRATOCHVILOVA M, HUANG F T, DIAZ M F, et al. Mapping the structural transitions controlled by the trilinear coupling in Ca3-xSrxTi2O7. Journal of Applied Physics, 2019, 125(24): 244102. |
[63] | POMIRO F, ABLITT C, BRISTOWE N C, et al. From first- to second-order phase transitions in hybrid improper ferroelectrics through entropy stabilization. Physical Review B, 2020, 102: 014101. |
[64] | HU Z Z, LU J J, CHEN B H, et al. First-order phase transition and unexpected rigid rotation mode in hybrid improper ferroelectric (La, Al) co-substituted Ca3Ti2O7 ceramics. Journal of Materiomics, 2019, 5(4): 618. |
[65] | NAGAI T, MOCHIZUKI Y, SHIRAKUNI H, et al. Phase transition from weak ferroelectricity to incipient ferroelectricity in Li2Sr(Nb1-xTax)2O7. Chemistry of Materials, 2020, 32(2): 744. |
[66] | HALASYAMANI P S, POEPPELMEIER K R. Noncentrosymmetric oxides. Chemistry of Materials, 1998, 10(10): 2753. |
[67] | MALLICK S, FORTES A D, ZHANG W G, et al. Switching between proper and hybrid-improper polar structures via cation substitution in A2La(TaTi)O7 (A=Li, Na). Chemistry of Materials, 2021, 33(7): 2666. |
[68] | CAMMARATA A, RONDINELLI J M. Ferroelectricity from coupled cooperative Jahn-Teller distortions and octahedral rotations in ordered Ruddlesden-Popper manganates. Physical Review B, 2015, 92: 014102. |
[69] | BENEDEK N A. Origin of ferroelectricity in a family of polar oxides: the Dion-Jacobson phases. Inorganic Chemistry, 2014, 53(7): 3769. |
[70] | WU X X, WANG S Y, WONG-NG W, et al. Novel optical properties and induced magnetic moments in Ru-doped hybrid improper ferroelectric Ca3Ti2O7. Journal of Advanced Ceramics, 2021, 10(1): 120. |
[71] | HUANG C, WONG-NG W, LIU W F, et al. Major improvement of ferroelectric and optical properties in Na-doped Ruddlesden- Popper layered hybrid improper ferroelectric compound, Ca3Ti2O7. Journal of Alloys and Compounds, 2019, 770: 582. |
[72] | JIANG Y, WANG S Y, LEI Y L, et al. Negative piezoelectric behaviors in hybrid improper ferroelectric Ca3-xNaxTi2O7 (x=0, 0.01) ceramics. Journal of the American Ceramic Society, 2020, 103(8): 4429. |
[73] | LI G J, LIU X Q, LU J J, et al. Crystal structural evolution and hybrid improper ferroelectricity in Ruddlesden-Popper Ca3-xSrxTi2O7 ceramics. Journal of Applied Physics, 2018, 123(1): 014101. |
[74] | LI S T, BIROL T. Suppressing the ferroelectric switching barrier in hybrid improper ferroelectrics. npj Computational Materials, 2020, 6: 168. |
[75] | JACOB K T, GUPTA S. Phase diagram of the system Ca-Ti-O at 1200 K. Bulletin of Materials Science, 2009, 32(6): 611. |
[76] | JACOB K T, ABRAHAM K P. Thermodynamic properties of calcium titanates: CaTiO3, Ca4Ti3O10, and Ca3Ti2O7. The Journal of Chemical Thermodynamics, 2009, 41(6): 816. |
[77] | GONG W P, WU L L, NAVROTSKY A. Combined experimental and computational investigation of thermodynamics and phase equilibria in the CaO-TiO2 system. Journal of the American Ceramic Society, 2018, 101(3): 1361. |
[78] | PFAFF G. Synthesis of calcium titanate powders by the Sol-Gel process. Chemistry of Materials, 1994, 6(1): 58. |
[79] | ZHOU C, CAI W, ZHANG Q W, et al. Enhancement in hybrid improper ferroelectricity of Ca3Ti2O7 ceramics by a two-stage sintering. Materials Chemistry and Physics, 2021, 258: 124001. |
[80] | WU H D, CAI W, ZHOU C, et al. Remarkable enhancement in hybrid improper ferroelectricity of Ca3Ti2O7 ceramics by a simple Sol-Gel process. Materials Letters, 2020, 278: 128447. |
[81] | LI X, YANG L, LI C F, et al. Ultra-low coercive field of improper ferroelectric Ca3Ti2O7 epitaxial thin films. 2017, 110(4): 042901. |
[82] | LU X Z, RONDINELLI J M. Epitaxial-strain-induced polar-to- nonpolar transitions in layered oxides. Nature Materials, 2016, 15(9): 951. |
[83] | SHI Y, WANG S Y, MA S, et al. Nanoscale imaging of ferroelectric domain and resistance switching in hybrid improper ferroelectric Ca3Ti2O7 thin films. Physics Letters A, 2020, 384(25): 126609. |
[84] | CHEN B H, SUN T L, LIU X Q, et al. Enhanced hybrid improper ferroelectricity in Sr3-xBaxSn2O7 ceramics with a Ruddlesden- Popper (R-P) structure. Applied Physics Letters, 2020, 116(4): 042903. |
[85] | LU J J, LIU X Q, MA X, et al. Crystal structures, dielectric properties, and phase transition in hybrid improper ferroelectric Sr3Sn2O7-based ceramics. Journal of Applied Physics, 2019, 125(4): 044101. |
[86] | HU Z Z, LU J J, CHEN B H, et al. Improved ferroelectric properties in hybrid improper ferroelectric Sr3-xBaxZr2O7. Journal of Alloys and Compounds, 2021, 866: 158705. |
[87] | HUANG L F, LU X Z, RONDINELLI J M. Tunable negative thermal expansion in layered perovskites from quasi-two-dimensional vibrations. Physical Review Letters, 2016, 117(11): 115901. |
[88] | ABLITT C, MCCAY H, CRADDOCK S, et al. Tolerance factor control of uniaxial negative thermal expansion in a layered perovskite. Chemistry of Materials, 2020, 32(1): 605. |
[89] | SENN M S, MURRAY C A, LUO X, et al. Symmetry switching of negative thermal expansion by chemical control. Journal of the American Chemical Society, 2016, 138(17): 5479. |
[90] | GLAMAZDA A, WULFERDING D, LEMMENS P, et al. Soft tilt and rotational modes in the hybrid improper ferroelectric Ca3Mn2O7. Physical Review B, 2018, 97(9): 094104. |
[91] | YE F, WANG J C, SHENG J M, et al. Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7. Physical Review B, 2018, 97(4): 041112. |
[92] | LIU S, ZHANG H, GHOSE S, et al. Nature of the structural symmetries associated with hybrid improper ferroelectricity in Ca3X2O7 (X=Mn and Ti). Physical Review B, 2019, 99(22): 224105. |
[93] | CHERIAN J G, BIROL T, HARMS N C, et al. Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7. Applied Physics Letters, 2016, 108(26): 262901. |
[94] | TONG B Y, WANG S Y, WONG-NG W, et al. Polarization switching dynamics and switchable diode effect in hybrid improper ferroelectric Ca3Ti2O7 ceramics. Journal of the American Ceramic Society, 2019, 102(4): 1875. |
[95] | OMARI L H, LEMZIOUKA H, MOUBAH R, et al. Structural and optical properties of Fe-doped Ruddlesden-Popper Ca3Ti2-xFexO7-δ nanoparticles. Materials Chemistry and Physics, 2020, 246: 122810. |
[96] | WANG F Q, CAI W, FU C L, et al. The electronic structure and optical properties of Ca3(Mn1-xTix)2O7 from first-principle calculations. Journal of Advanced Dielectrics, 2019, 9(1): 1950007. |
[97] | ZHANG X N, LIU W F, HAN Y L, et al. Novel optical and magnetic properties of Li-doped quasi-2D manganate Ca3Mn2O7 particles. Journal of Materials Chemistry C, 2017, 5(28): 7011. |
[98] | ZHANG J T, SHEN X F, WANG Y C, et al. Design of two- dimensional multiferroics with direct polarization-magnetization coupling. Physical Review Letters, 2020, 125(1): 017601. |
[99] | HARRIS A B. Symmetry analysis for the Ruddlesden-Popper systems Ca3Mn2O7 and Ca3Ti2O7. Physical Review B, 2011, 84(6): 064116. |
[100] | ZHU W K, PI L, HUANG Y J, et al. Electrically induced decrease of magnetization in Ca3Mn2O7. Applied Physics Letters, 2012, 101(19): 192407. |
[101] | LU J B, MA C. Oxygen octahedral coupling and structural reconstruction at the intergrowth interface in bilayered Ca3Mn2O7. Acta Materialia, 2017, 129: 26. |
[102] | JUNG W H. Weak ferromagnetism of n=2 Ruddlesden-Popper Ca3Mn2O7 system. Journal of Materials Science Letters, 2000, 19: 2037. |
[103] | HUANG F T, XUE F, GAO B, et al. Domain topology and domain switching kinetics in a hybrid improper ferroelectric. Nature Communications, 2016, 7: 11602. |
[104] | BARANOVSKIY A, AMOUYAL Y. Structural stability of calcium-manganate based CaO(CaMnO3)m (m=1, 2, 3, ∞) compounds for thermoelectric applications. Journal of Alloys and Compounds, 2016, 687: 562. |
[105] | LIU M F, ZHANG Y, LIN L F, et al. Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. Applied Physics Letters, 2018, 113(2): 022902. |
[106] | LI S Y, WANG S Y, LU Y G, et al. Exchange bias effect in hybrid improper ferroelectricity Ca2.94Na0.06Mn2O7. AIP Advances, 2018, 8(1): 015009. |
[107] | BARROZO P, SMÅBRÅTEN D R, TANG Y L, et al. Defect- enhanced polarization switching in the improper ferroelectric LuFeO3. Advanced Materials, 2020, 32(23): e2000508. |
[108] | MORIYA T. New mechanism of anisotropic superexchange interaction. Physical Review Letters, 1960, 4(5): 228. |
[109] | COCHRAN W. Crystal stability and the theory of ferroelectricity. Physical Review Letters, 1959, 3(9): 412. |
[110] | PEREZ-MATO J M, AROYO M, GARCÍA A, et al. Competing structural instabilities in the ferroelectric Aurivillius compound SrBi2Ta2O9. Physical Review B, 2004, 70(21): 214111. |
[111] | ZEMP Y, TRASSIN M, GRADAUSKAITE E, et al. Magnetoelectric coupling in the multiferroic hybrid-improper ferroelectric Ca3Mn1.9Ti0.1O7. Physical Review B, 2024, 109(18): 184417. |
[112] | XU X H, WANG Y Z, HUANG F T, et al. Highly tunable ferroelectricity in hybrid improper ferroelectric Sr3Sn2O7. Advanced Functional Materials, 2020, 30(42): 2003623. |
[113] | CHEN Q S, ZHANG B H, CHEN B H, et al. Distortion modes and ferroelectric properties in hybrid improper ferroelectric Sr3(Sn, Zr)2O7 ceramics. Journal of Applied Physics, 2022, 131(18): 184102. |
[114] | KAMIMURA S, YAMADA H, XU C N. Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n= 1, 2, ∞) with perovskite-related structures. Applied Physics Letters, 2012, 101(9): 091113. |
[115] | GREEN M A, PRASSIDES K, DAY P, et al. Structure of the n=2 and n=∞ member of the Ruddlesden-Popper series, Srn+1SnnO3n+1. International Journal of Inorganic Materials, 2000, 2(1): 35. |
[116] | BENEDEK N A, MULDER A T, FENNIE C J. Polar octahedral rotations: a path to new multifunctional materials. Journal of Solid State Chemistry, 2012, 195: 11. |
[117] | WANG Y Z, HUANG F T, LUO X, et al. The first room-temperature ferroelectric Sn insulator and its polarization switching kinetics. Advanced Materials, 2017, 29(2): 1601288. |
[118] | YOSHIDA S, AKAMATSU H, TSUJI R, et al. Hybrid improper ferroelectricity in (Sr, Ca)3Sn2O7 and beyond: universal relationship between ferroelectric transition temperature and tolerance factor in n=2 Ruddlesden-Popper phases. Journal of the American Chemical Society, 2018, 140(46): 15690. |
[119] | YOSHIDA S, FUJITA K, AKAMATSU H, et al. Ferroelectric Sr3Zr2O7: competition between hybrid improper ferroelectric and antiferroelectric mechanisms. Advanced Functional Materials, 2018, 28(30): 1801856. |
[120] | LIU X Q, LU J J, CHEN B H, et al. Hybrid improper ferroelectricity and possible ferroelectric switching paths in Sr3Hf2O7. Journal of Applied Physics, 2019, 125(11): 114105. |
[121] | GUO Z, ZHANG Z D, LIU X Q, et al. Hybrid improper ferroelectricity in La2Sr(Sc1-xFex)2O7 ceramics with double-layered Ruddlesden-Popper structures. Applied Physics Letters, 2024, 125(4): 042902. |
[122] | ZHANG R H, ABBETT B M, READ G, et al. La2SrCr2O7: controlling the tilting distortions of n=2 Ruddlesden-Popper phases through A-site cation order. Inorganic Chemistry, 2016, 55(17): 8951. |
[123] | YI W, KAWASAKI T, ZHANG Y, et al. La2SrSc2O7: A-site cation disorder induces ferroelectricity in Ruddlesden-Popper layered perovskite oxide. Journal of the American Chemical Society, 2024, 146(7): 4570. |
[124] | FLOROS N, MICHEL C, HERVIEU M, et al. New n = 2 members of the Li2Srn+1MnO3n+1 family, closely related to the Ruddlesden-Popper phases: structure and non-stoichiometry. Journal of Materials Chemistry, 1999, 9(12): 3101. |
[125] | GALVEN C, FOURQUET J L, SUARD E, et al. Mechanism of a reversible CO2 capture monitored by the layered perovskite Li2SrTa2O7. Dalton Transactions, 2010, 39(17): 4191. |
[126] | GALVEN C, MOUNIER D, PAGNIER T, et al. Thermal structural characterization of the acentric layered perovskite LiHSrTa2O7: X-ray and neutron diffraction, SHG and Raman experiments. Dalton Transactions, 2014, 43(39): 14841. |
[127] | SINGH S K, MURTHY V R K. Effect of crystal structure on microwave dielectric properties of Li2SrTa2(1-x)Nb2xO7 compounds. Materials Research Bulletin, 2015, 70: 514. |
[128] | SINGH S K, MURTHY V R K. Microwave dielectric properties of Li2SrTa2(1-x)Nb2xO7 ceramics investigated by Raman spectroscopy. Ceramics International, 2016, 42(6): 7284. |
[129] | UPPULURI R, AKAMATSU H, GUPTA A S, et al. Competing polar and antipolar structures in the Ruddlesden-Popper layered perovskite Li2SrNb2O7. Chemistry of Materials, 2019, 31(12): 4418. |
[130] | NAGAI T, SHIRAKUNI H, NAKANO A, et al. Weak ferroelectricity in n=2 pseudo Ruddlesden-Popper-type niobate Li2SrNb2O7. Chemistry of Materials, 2019, 31(16): 6257. |
[131] | PAGNIER T, ROSMAN N, GALVEN C, et al. Phase transition in the Ruddlesden-Popper layered perovskite Li2SrTa2O7. Journal of Solid State Chemistry, 2009, 182(2): 317. |
[132] | MOCHIZUKI Y, NAGAI T, SHIRAKUNI H, et al. Coexisting mechanisms for the ferroelectric phase transition in Li2SrNb2O7. Chemistry of Materials, 2021, 33(4): 1257. |
[133] | LIANG Z H, TANG K B, SHAO Q, et al. Synthesis, crystal structure, and photocatalytic activity of a new two-layer Ruddlesden-Popper phase, Li2CaTa2O7. Journal of Solid State Chemistry, 2008, 181(4): 964. |
[134] | GALVEN C, MOUNIER D, BOUCHEVREAU B, et al. Phase transitions in the Ruddlesden-Popper phase Li2CaTa2O7: X-ray and neutron powder thermodiffraction, TEM, Raman, and SHG experiments. Inorganic Chemistry, 2016, 55(5): 2309. |
[135] | ZHANG B H, HU Z Z, CHEN B H, et al. Room-temperature ferroelectricity in A-site ordered Ruddlesden-Popper Li2CaTa2O7 ceramics. Journal of Materiomics, 2020, 6(3): 593. |
[136] | PITCHER M J, MANDAL P, DYER M S, et al. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science, 2015, 347(6220): 420. |
[137] | BATTLE P D, MILLBURN J E, ROSSEINSKY M J, et al. Neutron diffraction study of the structural and electronic properties of Sr2HoMn2O7 and Sr2YMn2O7. Chemistry of Materials, 1997, 9(12): 3136. |
[138] | ZHANG R H, SENN M S, HAYWARD M A. Directed lifting of inversion symmetry in Ruddlesden-Popper oxide-fluorides: toward ferroelectric and multiferroic behavior. Chemistry of Materials, 2016, 28(22): 8399. |
[139] | GUPTA A S, AKAMATSU H, STRAYER M E, et al. Improper inversion symmetry breaking and piezoelectricity through oxygen octahedral rotations in layered perovskite family, LiRTiO4 (R= rare earths). Advanced Electronic Materials, 2016, 2(1): 1500196. |
[140] | GUPTA A S, AKAMATSU H, BROWN F G, et al. Competing structural instabilities in the Ruddlesden-Popper derivatives HRTiO4 (R=rare earths): oxygen octahedral rotations inducing noncentrosymmetricity and layer sliding retaining centrosymmetricity. Chemistry of Materials, 2017, 29(2): 656. |
[141] | AKAMATSU H, FUJITA K, KUGE T, et al. A-site cation size effect on oxygen octahedral rotations in acentric Ruddlesden- Popper alkali rare-earth titanates. Physical Review Materials, 2019, 3(6): 065001. |
[142] | AKAMATSU H, FUJITA K, KUGE T, et al. Inversion symmetry breaking by oxygen octahedral rotations in the Ruddlesden-Popper NaRTiO4 family. Physical Review Letters, 2014, 112(18): 187602. |
[143] | RODGERS J A, BATTLE P D, DUPRÉ N, et al. Cation and spin ordering in the n=1 Ruddlesden-Popper phase La2Sr2LiRuO8. Chemistry of Materials, 2004, 16(22): 4257. |
[144] | NISHIMOTO S, MATSUDA M, HARJO S, et al. Structure determination of n=1 Ruddlesden-Popper compound HLaTiO4 by powder neutron diffraction. Journal of the European Ceramic Society, 2006, 26(4/5): 725. |
[145] | NISHIMOTO S, MATSUDA M, HARJO S, et al. Structural change in a series of protonated layered perovskite compounds, HLnTiO4 (Ln=La, Nd and Y). Journal of Solid State Chemistry, 2006, 179(6): 1892. |
[146] | BYEON S H, YOON J J, LEE S O. A new family of protonated oxides HLnTiO4 (Ln=La, Nd, Sm, and Gd). Journal of Solid State Chemistry, 1996, 127(1): 119. |
[147] | SILYUKOV O I, ABDULAEVA L D, BUROVIKHINA A A, et al. Phase transformations during HLnTiO4 (Ln=La, Nd) thermolysis and photocatalytic activity of obtained compounds. Journal of Solid State Chemistry, 2015, 226: 101. |
[148] | BALACHANDRAN P V, PUGGIONI D, RONDINELLI J M. Crystal-chemistry guidelines for noncentrosymmetric A2BO4 Ruddlesden-Popper oxides. Inorganic Chemistry, 2014, 53(1): 336. |
[149] | ZHANG B H, XU D M, CHEN B H, et al. Hybrid improper ferroelectricity in A-site cation ordered Li2La2Ti3O10 ceramic with triple-layer Ruddlesden-Popper structure. Applied Physics Letters, 2021, 118(5): 052903. |
[150] | ZHANG B H, XU D M, GUO R Z, et al. Hybrid improper ferroelectricity and phase transition behavior of Li2Nd2Ti3O10 ceramics with A-site ordered triple-layer Ruddlesden-Popper structure. Journal of Materiomics, 2024, 10(1): 145. |
[1] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[2] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[3] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[4] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[5] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[6] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[7] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[8] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[9] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[10] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[11] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[12] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[13] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[14] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[15] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||