无机材料学报 ›› 2024, Vol. 39 ›› Issue (1): 61-70.DOI: 10.15541/jim20230370 CSTR: 32189.14.10.15541/jim20230370
所属专题: 【结构材料】热障与环境障涂层(202409); 【结构材料】高熵陶瓷(202409)
郭凌翔(), 唐颖, 黄世伟, 肖博澜, 夏东浩, 孙佳(
)
收稿日期:
2023-08-14
修回日期:
2023-10-18
出版日期:
2024-01-20
网络出版日期:
2023-10-15
通讯作者:
孙 佳, 副教授. E-mail: j.sun@nwpu.edu.cn作者简介:
郭凌翔(1997-), 男, 博士研究生. E-mail: guolingxiang@mail.nwpu.edu.cn
基金资助:
GUO Lingxiang(), TANG Ying, HUANG Shiwei, XIAO Bolan, XIA Donghao, SUN Jia(
)
Received:
2023-08-14
Revised:
2023-10-18
Published:
2024-01-20
Online:
2023-10-15
Contact:
SUN Jia, associate professor. E-mail: j.sun@nwpu.edu.cnAbout author:
GUO Lingxiang(1997-), male, PhD candidate. E-mail: guolingxiang@mail.nwpu.edu.cn
Supported by:
摘要:
新一代高超声速飞行器热端部件服役温度不断提高, 对表面防护涂层的相稳定性和抗烧蚀性能提出了更高的要求。本工作针对传统过渡金属氧化物ZrO2、HfO2涂层开展高熵化设计, 采用高温固相反应结合超音速大气等离子喷涂制备(Hf0.125Zr0.125Sm0.25Er0.25Y0.25)O2-δ(M1R3O)、(Hf0.2Zr0.2Sm0.2Er0.2Y0.2)O2-δ(M2R3O)、(Hf0.25Zr0.25- Sm0.167Er0.167Y0.167)O2-δ(M3R3O)三种高熵氧化物涂层, 探究稀土组元含量对高熵氧化物涂层的相结构演变规律、相稳定性以及抗烧蚀性能的影响。M2R3O涂层和M3R3O涂层呈现优异的相稳定性和抗烧蚀性能, 涂层经热流密度为2.38~2.40 MW/m2的氧-乙炔焰烧蚀后仍保持物相结构稳定, 未发生固溶体分解或析出稀土组元。其中M2R3O涂层循环烧蚀180 s后的质量烧蚀率与线烧蚀率分别为0.01 mg/s和-1.16 μm/s, 相比M1R3O涂层(0.09 mg/s、-1.34 μm/s)以及M3R3O涂层(0.02 mg/s、-4.51 μm/s), 分别降低了88.9%、13.4%以及50.0%、74.3%, 表现出最优异的抗烧蚀性能。M2R3O涂层的抗烧蚀性能优异归因于其兼具较高的熔点(>2200 ℃)和较低的热导率((1.07±0.09) W/(m·K)), 使其有效防护内部的SiC过渡层以及C/C复合材料免受氧化损伤, 避免了界面SiO2相形成所导致的界面开裂。
中图分类号:
郭凌翔, 唐颖, 黄世伟, 肖博澜, 夏东浩, 孙佳. C/C复合材料高熵氧化物涂层抗烧蚀性能[J]. 无机材料学报, 2024, 39(1): 61-70.
GUO Lingxiang, TANG Ying, HUANG Shiwei, XIAO Bolan, XIA Donghao, SUN Jia. Ablation Resistance of High-entropy Oxide Coatings on C/C Composites[J]. Journal of Inorganic Materials, 2024, 39(1): 61-70.
Label | Constituent | |
---|---|---|
M1R3O | (Hf0.125Zr0.125Sm0.25Er0.25Y0.25)O2-δ | 1/3 |
M2R3O | (Hf0.2Zr0.2Sm0.2Er0.2Y0.2)O2-δ | 2/3 |
M3R3O | (Hf0.25Zr0.25Sm0.167Er0.167Y0.167)O2-δ | 3/3 |
表1 研究中高熵氧化物的成分及组元摩尔比
Table 1 Compositions and component molar ratios of high-entropy oxides in this study
Label | Constituent | |
---|---|---|
M1R3O | (Hf0.125Zr0.125Sm0.25Er0.25Y0.25)O2-δ | 1/3 |
M2R3O | (Hf0.2Zr0.2Sm0.2Er0.2Y0.2)O2-δ | 2/3 |
M3R3O | (Hf0.25Zr0.25Sm0.167Er0.167Y0.167)O2-δ | 3/3 |
Parameter | Value |
---|---|
Current/A | 410-430 |
Voltage/V | 100-120 |
Primary gas Ar/(L·min-1) | 65-70 |
Second gas H2/(L·min-1) | 3.5-5.0 |
Powder flow Ar/(L·min-1) | 5-7 |
Spray distance/mm | 100 |
Powder feed rate/(g·min-1) | 5-6 |
表2 高熵氧化物涂层的SAPS参数
Table 2 Parameters of SAPS for high-entropy oxide coatings
Parameter | Value |
---|---|
Current/A | 410-430 |
Voltage/V | 100-120 |
Primary gas Ar/(L·min-1) | 65-70 |
Second gas H2/(L·min-1) | 3.5-5.0 |
Powder flow Ar/(L·min-1) | 5-7 |
Spray distance/mm | 100 |
Powder feed rate/(g·min-1) | 5-6 |
图1 高熵氧化物粉体的物相表征
Fig. 1 Phase characterizations of high-entropy oxide powders (a) XRD pattern of M2R3O and standard diffraction peaks for each single-component oxide; (b) XRD patterns of three high-entropy oxides; (c) Ideal crystal structure; (d) Raman spectra of three high-entropy oxides
图2 M2R3O粉体的TEM测试分析
Fig. 2 TEM analyses of M2R3O powders (a) Morphology; (b) High-resolution TEM (HRTEM) image; (c) Selective area electron diffraction (SAED) pattern; (d) High-angle annular dark field (HAADF) image and corresponding element mappings
图3 高熵氧化物涂层表面和截面的微观形貌
Fig. 3 Surface and cross-section morphologies of high-entropy oxide coatings (a, d) M1R3O coating; (b, e) M2R3O coating; (c, f) M3R3O coating
图4 高熵氧化物涂层的XRD图谱
Fig. 4 XRD patterns of high-entropy oxide coatings (a) Full spectrum diffraction; (b) M1R3O coating and refinement pattern; (c) M2R3O coating and refinement pattern; (d) M3R3O coating and refinement pattern
图5 HfO2-RE2O3和ZrO2-RE2O3 (RE=Sm、Er、Y)二元相图[30]
Fig. 5 Binary phase diagrams of HfO2-RE2O3 and ZrO2-RE2O3 (RE=Sm, Er and Y)[30] (a) HfO2-Sm2O3; (b) HfO2-Er2O3; (c) HfO2-Y2O3; (d) ZrO2-Sm2O3; (e) ZrO2-Er2O3; (f) ZrO2-Y2O3
图10 涂层循环烧蚀180 s后的截面微观形貌以及EDS分析
Fig. 10 Cross-section morphologies and EDS analyses of high-entropy oxide coatings after cyclic ablation for 180 s(a-c) M1R3O; (d-f) M2R3O; (g-i) M3R3O
图11 高熵氧化物涂层与其他涂层在相同烧蚀环境中的抗烧蚀性能比较
Fig. 11 Comparison of ablation resistances between high-entropy oxide coatings and other coatings in the same ablation environment
图S1 M1R3O粉体的TEM测试分析
Fig. S1 TEM analysis of M1R3O powders (a) Morphology; (b) HRTEM image; (c) SAED pattern; (d) HAADF image and its corresponding element mappings
图S2 M3R3O粉体的TEM测试分析
Fig. S2 TEM analysis of M3R3O powders (a) Morphology; (b) HRTEM image; (c) SAED pattern; (d) HAADF image and its corresponding element mappings
Hf | Zr | Sm | Er | Y | Si | O | |
---|---|---|---|---|---|---|---|
Spot A/(%, in atom) | 10.5 | 5.6 | 9.3 | 8.5 | 8.4 | — | 57.7 |
Spot B/(%, in atom) | 5.6 | 4.7 | 5.1 | 8.7 | 10.4 | 3.8 | 61.7 |
表S1 EDS元素点扫描分析
Tabel S1 EDS element point scanning analysis
Hf | Zr | Sm | Er | Y | Si | O | |
---|---|---|---|---|---|---|---|
Spot A/(%, in atom) | 10.5 | 5.6 | 9.3 | 8.5 | 8.4 | — | 57.7 |
Spot B/(%, in atom) | 5.6 | 4.7 | 5.1 | 8.7 | 10.4 | 3.8 | 61.7 |
[1] |
NI D, CHENG Y, ZHANG J, et al. Advances in ultra-high temperature ceramics, composites, and coatings. Journal of Advanced Ceramics, 2022, 11(1):1.
DOI |
[2] | DU H. Research progress on integrated thermal management and key technology of hypersonic vehicles. Equipment Environmental Engineering, 2023, 20(1):43. |
[3] |
REGHU V R, SHANKAR V, RAMASWAMY P. Challenges in plasma spraying of 8%Y2O3-ZrO2 thermal barrier coatings on Al alloy automotive piston and influence of vibration and thermal fatigue on coating characteristics. Materials Today: Proceedings, 2018, 5(11):23927.
DOI URL |
[4] | WANG J, LU X, HU M, et al. Phase stability, thermophysical properties, thermal shock behavior and CMAS resistance of Sc2O3-CeO2 co-stabilized ZrO2 TBCs. Surface and Coatings Technology, 2023, 467: 129679. |
[5] |
LI C, FAN H, NI L, et al. Phase transformation and thermal conductivity of the APS Y2O3 doped HfO2 coating with hybrid structure. Ceramics International, 2022, 48(14):19633.
DOI URL |
[6] |
WU Y, HONG D, ZHONG X, et al. Research progress on hafnium-based thermal barrier coatings materials. Ceramics International, 2023, 49(13):21133.
DOI URL |
[7] | WU H, DUAN Y, LIU K, et al. First-principles study of phase transition and band structure of ZrO2 under pressure. Journal of Alloys and Compounds, 2015, 645: 352. |
[8] |
MANDAL G, JANA R, SAHA P, et al. Study of structural phase transition of HfO2 at high pressure. Materials Today: Proceedings, 2016, 3(9):2997.
DOI URL |
[9] |
PAN L, HE L, NIU Z, et al. Corrosion behavior of ytterbium hafnate exposed to water-vapor with Al(OH)3 impurities. Journal of the European Ceramic Society, 2023, 43(2):612.
DOI URL |
[10] |
HE L, PAN L, ZHOU W, et al. Thermal corrosion behavior of Yb4Hf3O12 ceramics exposed to calcium-ferrum-alumina-silicate (CFAS) at 1400 ℃. Journal of the European Ceramic Society, 2023, 43(9):4114.
DOI URL |
[11] |
LIU X Y, CHE J W, YI H, et al. Influence of powder states on the composition and phase stability of LZ/YSZ composite thermal barrier coatings. Ceramics International, 2018, 44(16):20291.
DOI URL |
[12] | LIU D, WEN T, YE B, et al. Synthesis of superfine high-entropy metal diboride powders. Scripta Materialia, 2019, 167: 110. |
[13] | YE B, WEN T, NGUYEN M C, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics. Acta Materialia, 2019, 170: 15. |
[14] |
SUN L, REN X, DU T, et al. High entropy engineering: new strategy for the critical property optimizations of rare earth silicates. Journal of Inorganic Materials, 2020, 36(4):339.
DOI URL |
[15] |
SUN Y, YE L, ZHAO W, et al. Synthesis of high entropy carbide nano powders via liquid polymer precursor route. Journal of Inorganic Materials, 2021, 36(4):393.
DOI URL |
[16] | ANAND G, WYNN A P, HANDLEY C M, et al. Phase stability and distortion in high-entropy oxides. Acta Materialia, 2018, 146: 119. |
[17] |
PIANASSOLA M, ANDERSON K L, SAFIN J, et al. Tuning the melting point and phase stability of rare-earth oxides to facilitate their crystal growth from the melt. Journal of Advanced Ceramics, 2022, 11(9):1479.
DOI |
[18] |
SUN J, GUO L, ZHANG Y, et al. Superior phase stability of high entropy oxide ceramic in a wide temperature range. Journal of the European Ceramic Society, 2022, 42(12):5053.
DOI URL |
[19] | LI Y, LIU Y, GUO C, et al. Ablation resistance of ZrC-based composite coating with multi-layer structure for carbon/carbon composites above 2200 ℃. Corrosion Science, 2022, 207: 110600. |
[20] |
GUO X, ZHANG Y, LI T, et al. High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: a potential environmental barrier coating material. Journal of the European Ceramic Society, 2022, 42(8):3570.
DOI URL |
[21] |
WANG J, WU F, ZOU R, et al. High-entropy ferroelastic rare-earth tantalite ceramic: (Y0.2Ce0.2Sm0.2Gd0.2Dy0.2)TaO4. Journal of the American Ceramic Society, 2021, 104(11):5873.
DOI URL |
[22] |
ZHANG F, GUO M, MIAO Y, et al. Preparation and sintering behavior of high entropy ceramic (Zr1/7Hf1/7Ce1/7Y2/7La2/7)O2-δ. Journal of Inorganic Materials, 2021, 36(4):372.
DOI URL |
[23] | ZHAO Z, CHEN H, XIANG H, et al.(Y0.25Yb0.25Er0.25Lu0.25)2 (Zr0.5Hf0.5) 2O7: a defective fluorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3. Journal of Materials Science & Technology, 2020, 39: 167. |
[24] |
GILD J, SAMIEE M, BRAUN J L, et al. High-entropy fluorite oxides. Journal of the European Ceramic Society, 2018, 38(10):3578.
DOI URL |
[25] | WRIGHT A J, WANG Q, HU C, et al. Single-phase duodenary high-entropy fluorite/pyrochlore oxides with an order-disorder transition. Acta Materialia, 2021, 211: 116858. |
[26] |
ZHOU L, LI F, LIU J, et al. High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying. Journal of the European Ceramic Society, 2020, 40(15):5731.
DOI URL |
[27] |
DA COSTA PINTO C, CHAUDHURI P, GHOSH A, et al. Mechanical alloying synthesis of Sm3NbO7 defect fluorite and structural characterization by X-ray diffraction, Raman spectroscopy and DFT calculation. Ceramics International, 2021, 47(7):8936.
DOI URL |
[28] | FENG G, YAO X, YU Y, et al. Synthesis and performance characterization of Hafnium-based multilayer coating applied over carbon/carbon composites with sharp leading edge. Journal of Materials Science & Technology, 2023, 153: 254. |
[29] |
HU D, ZHANG Y, DONG Z, et al. Relationship analyses on environmental factors-ablation performance based on ZrC-TaC system: oxygen partial pressure and gas flow scouring. Journal of the European Ceramic Society, 2023, 43(6):2331.
DOI URL |
[30] |
ANDRIEVSKAYA E R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. Journal of the European Ceramic Society, 2008, 28(12):2363.
DOI URL |
[31] | ANANDKUMAR M, TROFIMOV E. Synthesis, properties, and applications of high-entropy oxide ceramics: current progress and future perspectives. Journal of Alloys and Compounds, 2023, 960: 170690. |
[32] | HU D, FU Q, TONG M, et al. Multiple cyclic ablation behaviors of multilayer ZrC-TaC coating with ZrC-SiC interface layer. Corrosion Science, 2022, 200: 110215. |
[33] | ZE Y, WANG D, XIONG X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 ℃. Nature Communications, 2017, 8: 15836. |
[34] |
GU S, ZHANG S, LIU F, et al. New anti-ablation candidate for carbon/carbon composites: preparation, composition and ablation behavior of Y2Hf2O7 coating under an oxyacetylene torch. Journal of the European Ceramic Society, 2018, 38(15):5082.
DOI URL |
[35] |
YU Y, FENG G, JIA Y, et al. Nanosized (Zr, Hf)O2 coating reinforced by AlN whiskers for the ablation protection of SiC coated C/C composites. Journal of the European Ceramic Society, 2023, 43(9):3959.
DOI URL |
[36] | FENG G, LI H, YAO X, et al. Investigation on the relationship between multilayer architecture and ablation behavior using an oxyacetylene torch. Corrosion Science, 2022, 198: 110104. |
[37] |
ZHANG J, ZHANG Y, ZHANG T, et al. Cyclic ablation behavior and microstructure evolution of multi-layer coating on C/C composites under oxyacetylene torch. Ceramics International, 2022, 48(15):21709.
DOI URL |
[38] |
FENG G, LI H, YAO X, et al. Ablation resistance of HfC- TaC/HfC-SiC alternate coating for SiC-coated carbon/carbon composites under cyclic ablation. Journal of the European Ceramic Society, 2021, 41(6):3207.
DOI URL |
[39] |
REN J, ZHANG Y, ZHANG P, et al. Ablation resistance of HfC coating reinforced by HfC nanowires in cyclic ablation environment. Journal of the European Ceramic Society, 2017, 37(8):2759.
DOI URL |
[40] | LI J, ZHANG Y, WANG H, et al. Long-life ablation resistance ZrB2-SiC-TiSi2 ceramic coating for SiC coated C/C composites under oxidizing environments up to 2200 K. Journal of Alloys and Compounds, 2020, 824: 153934. |
[41] | ZHANG Y, SUN J, GUO L, et al. Ablation behavior under oxyacetylene torch of ZrC coating modified by SiC/TaC nanocomposites. Corrosion Science, 2022, 205: 110423. |
[42] | ZHANG Y, HU H, ZHANG P, et al. SiC/ZrB2-SiC-ZrC multilayer coating for carbon/carbon composites against ablation. Surface and Coatings Technology, 2016, 300: 1. |
[43] | FENG G, CHEN L, YAO X, et al. Design and characterization of zirconium-based multilayer coating for carbon/carbon composites against oxyacetylene ablation. Corrosion Science, 2021, 192: 109785. |
[1] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[2] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[5] | 朱嘉桐, 楼志豪, 张萍, 赵佳, 孟轩宇, 许杰, 高峰. 稀土钽酸盐(RETaO4)高熵陶瓷的制备与热学性能研究[J]. 无机材料学报, 2021, 36(4): 411-417. |
[6] | 桑玮玮, 张红松, 陈华辉, 温斌, 李新春. (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7高熵陶瓷的制备及热物理性能[J]. 无机材料学报, 2021, 36(4): 405-410. |
[7] | 张晓燕, 刘馨玥, 闫金华, 谷耀行, 齐西伟. 钙钛矿型(La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3高熵氧化物陶瓷的制备及性能研究[J]. 无机材料学报, 2021, 36(4): 379-385. |
[8] | 郭猛, 张丰年, 苗洋, 刘宇峰, 郁军, 高峰. La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3钙钛矿高熵陶瓷粉体的制备及其电学性能[J]. 无机材料学报, 2021, 36(4): 431-435. |
[9] | 孙娅楠, 叶丽, 赵文英, 陈凤华, 邱文丰, 韩伟健, 刘伟, 赵彤. 液相聚合物前驱体法制备高熵碳化物纳米粉体[J]. 无机材料学报, 2021, 36(4): 393-398. |
[10] | 孙鲁超, 任孝旻, 杜铁锋, 罗颐秀, 张洁, 王京阳. 高熵化设计: 稀土硅酸盐材料关键性能优化新策略[J]. 无机材料学报, 2021, 36(4): 339-346. |
[11] | 郭晓杰, 鲍伟超, 刘吉轩, 王新刚, 张国军, 许钫钫. 高熵陶瓷固溶结构的透射电镜研究[J]. 无机材料学报, 2021, 36(4): 365-371. |
[12] | 陈磊,王恺,苏文韬,张文,徐晨光,王玉金,周玉. 过渡金属非氧化物高熵陶瓷的研究进展[J]. 无机材料学报, 2020, 35(7): 748-758. |
[13] | 吴小军,杨杰,郑蕊,张兆甫,杨毅. 烧蚀型面结构对CVI+HPIC工艺制备针刺C/C喉衬等离子烧蚀性能的影响[J]. 无机材料学报, 2020, 35(6): 654-660. |
[14] | 姚西媛, 李克智, 任俊杰, 张守阳. 混合前驱体制备高织构三维C/C复合材料的微观结构及疲劳行为[J]. 无机材料学报, 2020, 35(5): 589-592. |
[15] | 庞生洋, 王佩瑶, 胡成龙, 赵日达, 汤素芳. 碳纤维预制体结构对C/C复合材料及其螺栓力学性能的影响[J]. 无机材料学报, 2019, 34(12): 1272-1278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||