【结构材料】热障与环境障涂层(202312)

热障涂层(Thermal Barrier Coatings)是一层陶瓷涂层,它沉积在耐高温金属或超合金的表面,热障涂层对于基底材料起到隔热作用,降低基底温度,使得用其制成的器件(如发动机涡轮叶片) 能在高温下运行,并且可以提高器件(发动机等)热效率达到60%以上。热障涂层技术的应用可以大幅提升发动机和地面燃气轮机的综合性能,延长其使用寿命,是高性能发动机和燃气轮机研制的关键技术之一。

默认 最新文章 浏览次数
Please wait a minute...
选择: 显示/隐藏图片
1. 聚碳硅烷基复合涂层PCS裂解行为及其抗激光烧蚀性能
蔡佳, 赵芳霞, 范栋, 黄利平, 牛亚然, 郑学斌, 张振忠
无机材料学报    2023, 38 (11): 1271-1280.   DOI: 10.15541/jim20230143
摘要230)   HTML25)    PDF(pc) (14166KB)(490)    收藏

针对高性能激光防护涂层的开发问题, 根据聚碳硅烷(PCS)裂解时会消耗大量激光能量, 并产生高温陶瓷保护相的特点, 本研究创新性地提出在传统氧化钇稳定氧化锆(YSZ)隔热涂层表面再复合PCS烧蚀型涂层的防护思路, 采用料浆法结合大气等离子喷涂技术(APS)在Ni基合金表面分别制备了NiCrAlY/YSZ/PCS-TiO2(YPT)和NiCrAlY/YSZ/PCS-Y2O3(YPY)涂层。在研究TiO2和Y2O3添加相对PCS裂解行为影响的基础上, 系统研究了YPT和YPY复合涂层对10.6 μm CO2激光器的抗激光烧蚀性能, 并与单层YSZ涂层进行比较。结果表明, YPY和YPT复合涂层比传统YSZ涂层的激光防护效果更好, 这是因为在激光烧蚀初期, 涂层表面的PCS裂解会消耗激光能量, 且烧蚀后残余的Y2SiO5、SiC和SiO2相会沉积在YSZ涂层上, 形成致密的保护层, 继续对YSZ涂层进行激光防护。YPY比YPT涂层激光防护性能更好, 这是因为Y2O3具有高热导率和低热膨胀系数, YPY涂层产生的温度梯度更小, 从而缓解热应力, 且Y2O3参与PCS的裂解生成了Y2SiO5相, 比TiO2更能抑制PCS裂解引起的体积膨胀。此外YPY涂层中心烧蚀温度更高, 生成PCS裂解产物SiC和SiO2相的速度更快, 能及时保护下方涂层, 表现出更好的抗激光烧蚀性能。该研究有望为新型抗激光复合涂层的设计提供研究思路。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
2. TiAl合金表面TiAlCrY/YSZ涂层高温长时间服役性能
潘洋洋, 梁波, 洪督, 祁志祥, 牛亚然, 郑学斌
无机材料学报    2023, 38 (1): 105-112.   DOI: 10.15541/jim20220327
摘要405)   HTML23)    PDF(pc) (17461KB)(452)    收藏

TiAl合金具有低密度、高比强度的优异性能, 是一种潜在的航空发动机用结构材料。TiAl合金的服役温度范围为700~900 ℃, 在其表面制备高温热防护涂层可以进一步提高服役温度。本研究采用等离子喷涂技术在TiAl合金表面制备了新型TiAlCrY/YSZ涂层, 并与传统的NiCrAlY/YSZ热障涂层进行高温长时间服役性能对比研究。结果发现, TiAlCrY/YSZ涂层在1100 ℃空气环境中服役300 h保持完好, 表现出良好的高温性能, 而NiCrAlY/YSZ涂层在1100 ℃的服役寿命不足100 h。显微分析结果表明, TiAlCrY黏结层表面会形成一层连续且致密的TGO, 其主要成分为Al2O3, 与YSZ涂层的界面兼容性良好。并且TGO在1100 ℃空气环境中服役300 h后, 厚度仍<8 μm。以上研究表明, 与传统NiCrAlY/YSZ热障涂层相比, TiAlCrY/YSZ更适合作为TiAl合金表面的高温热防护涂层。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
3. 富铝CMAS对稀土硅酸盐环境障涂层的腐蚀行为与机制研究
范栋, 钟鑫, 王亚文, 张振忠, 牛亚然, 李其连, 张乐, 郑学斌
无机材料学报    2023, 38 (5): 544-552.   DOI: 10.15541/jim20220532
摘要382)   HTML24)    PDF(pc) (10189KB)(349)    收藏

稀土硅酸盐环境障涂层(EBCs)有望应用于新一代高推重比航空发动机热端部件, 但是服役条件下的熔盐腐蚀成为限制其应用的瓶颈。CMAS组分和稀土硅酸盐的晶体结构等因素对其腐蚀行为产生显著影响。本工作以不同晶型的稀土硅酸盐涂层材料为研究对象, 采用大气等离子喷涂技术制备X1-Gd2SiO5、X2-RE2SiO5(RE=Y, Er)涂层, 并研究其在富Al2O3的CMAS熔盐环境(1400 ℃)的腐蚀行为与机制。结果表明, X2-RE2SiO5(RE=Y, Er)涂层耐蚀性能优于X1-Gd2SiO5涂层, 这与涂层材料的物相组成和晶体结构的稳定性等因素有关。经CMAS腐蚀25 h后, X1-Gd2SiO5涂层表面仅生成磷灰石相; X2-RE2SiO5涂层不仅生成磷灰石相, 涂层中的RE2O3还与CMAS中的Al2O3反应生成石榴石相。生成石榴石相可提高涂层表面CMAS中CaO、SiO2的相对含量, 促进磷灰石致密层的生成, 从而改善其耐蚀性能。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
4. 硅酸镱环境障涂层抗熔盐腐蚀行为与机制研究
刘平平, 钟鑫, 张乐, 李红, 牛亚然, 张翔宇, 李其连, 郑学斌
无机材料学报    2022, 37 (12): 1267-1274.   DOI: 10.15541/jim20220265
摘要365)   HTML27)    PDF(pc) (6047KB)(465)    收藏

稀土硅酸盐环境障涂层(EBC)是应用于新一代高推重比航空发动机热端部件的重要材料, 但其在高温熔盐环境的腐蚀行为与机制尚不明晰。本工作采用真空等离子喷涂技术(VPS)制备了Yb2SiO5/Yb2Si2O7/Si环境障涂层, 并研究了该涂层体系在900 ℃、Na2SO4+25% NaCl(质量分数)熔盐环境中的腐蚀行为与机制。研究发现, 所制备的Yb2SiO5/Yb2Si2O7/Si涂层体系结构致密, 各层之间结合良好; 涂层体系腐蚀240 h, 熔盐组分渗透Yb2SiO5涂层, 在Yb2Si2O7中间层发生富集。涂层中Yb2SiO5相具有良好的稳定性, Yb2O3第二相与熔盐发生反应, 且随腐蚀时间延长, Yb2O3含量减少。中间层Yb2Si2O7相与熔盐反应生成磷灰石相NaYb9Si6O26和钠硅酸盐, 并产生Cl2和SO2等挥发性物质, 从而影响服役寿命。硅黏结层中未发现熔盐渗透现象, 保持完整。该涂层体系具有良好的抗熔盐腐蚀性能。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
5. LaMeAl11O19/YSZ热障涂层热力学性能和热循环寿命
蔚海浪, 曹学强, 邓龙辉, 蒋佳宁
无机材料学报    2022, 37 (12): 1259-1266.   DOI: 10.15541/jim20220202
摘要359)   HTML33)    PDF(pc) (7333KB)(511)    收藏

LaMeAl11O19陶瓷具有独特的晶体结构, 优异的热力学性能, 低热导率, 高温相稳定性等特点, 是一类非常有应用前景的热障涂层(TBC)材料。本研究通过大气等离子喷涂(APS)制备了LaMeAl11O19/YSZ (Me=Mg, Cu, Zn)双陶瓷层热障涂层。通过对涂层进行火焰热循环测试并结合扫描电子显微镜、X射线衍射仪等分析技术对涂层进行失效分析。结果表明, LaMgAl11O19 (LMA)、LaZnAl11O19 (LZA)和LaCuAl11O19 (LCA)粉末在等离子喷涂过程中发生了分解, 导致三种涂层中磁铅石相含量的差异, 从而影响三种涂层的热循环寿命。由于LaMeAl11O19层与YSZ层的热膨胀系数不匹配以及非晶相重结晶产生的体积收缩, LaMeAl11O19层从YSZ层上剥落。YSZ层暴露在高温下, 加速了烧结和TGO的生长, 又促进了YSZ层剥落。低温下, LaMeAl11O19的热导率随着Me原子序数增加而降低; 高温下, 与LMA和LZA相比, LCA涂层红外发射率最高(0.88, 600 ℃), 削弱了光子传导对热导率的贡献, 导致热导率降低, LCA在高温红外辐射涂层中具有潜在的应用价值。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
6. 热处理温度对LaMgAl11O19涂层热/力学性能的影响
安文然, 黄晶琪, 卢祥荣, 蒋佳宁, 邓龙辉, 曹学强
无机材料学报    2022, 37 (9): 925-932.   DOI: 10.15541/jim20210720
摘要392)   HTML34)    PDF(pc) (7075KB)(601)    收藏

大气等离子喷涂制备的LaMgAl11O19 (LMA)热障涂层无定型相含量较高, 会严重影响涂层服役寿命。通过900~1600 ℃不同温度热处理12 h, 研究晶粒尺寸和孔隙率等微观结构和无定形相含量对LMA涂层力学、热物理以及抗热震性能的影响。结果表明: 喷涂态LMA涂层具有900和1163 ℃两个结晶温度点。900 ℃热处理后, LMA涂层中含有较多的无定形相以及最高的孔隙率((18.88±2.15)%), 1000 ℃测试时,具有最低的热扩散系数(0.53 mm2/s); 由于重结晶和烧结作用使得无定型相含量和孔隙率降低, 1100~1400 ℃之间热处理的涂层具有较高的硬度(1100℃时达到最高值(12.08±0.58) GPa); 1300 ℃热处理的涂层中含有大量微米级片状晶, 具有较高的应变容限以及平均热循环寿命(588次); 热处理温度达到1500 ℃时, 由于片状晶平行堆叠, 晶粒厚度迅速增加, 孔隙率增加、力学性能显著降低。热震过程中由于热应力的反复作用, 涂层内出现晶粒破碎和裂纹扩展等现象, 导致涂层最终失效。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0