无机材料学报 ›› 2021, Vol. 36 ›› Issue (4): 431-435.DOI: 10.15541/jim20200380 CSTR: 32189.14.10.15541/jim20200380
所属专题: 能源材料论文精选(2021); 【虚拟专辑】钙钛矿材料(2020~2021); 【虚拟专辑】超级电容器(2020~2021)
收稿日期:
2020-07-07
修回日期:
2020-10-23
出版日期:
2021-04-20
网络出版日期:
2020-11-05
通讯作者:
苗 洋, 副教授. E-mail: miaoyang@tyut.edu.cn
作者简介:
郭 猛(1997-), 男, 硕士研究生. E-mail: 18235120868@163.com
基金资助:
GUO Meng(), ZHANG Fengnian, MIAO Yang(), LIU Yufeng, YU Jun, GAO Feng
Received:
2020-07-07
Revised:
2020-10-23
Published:
2021-04-20
Online:
2020-11-05
Contact:
MIAO Yang, associate professor. E-mail: miaoyang@tyut.edu.cn
About author:
GUO Meng(1997-), male, Master candidate. E-mail: 18235120868@163.com
Supported by:
摘要:
采用共沉淀法结合煅烧工艺制备La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3钙钛矿结构高熵陶瓷粉体, 显著降低了材料的合成温度。采用不同手段对其进行物相及形貌表征, 研究结果表明, 当煅烧温度为800 ℃时, 样品已经形成钙钛矿结构, 但有少量第二相; 当煅烧温度为1000 ℃时, La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3陶瓷粉体形成了纯钙钛矿结构。以La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3为电极材料制成工作电极, 采用三电极体系对工作电极进行电学性能测试, 包括循环伏安(CV)及恒流充放电(GCD)测试, 结果显示该电极材料在1 A/g电流密度下具有154.8 F/g的比容量;当电流密度增大到10 A/g时, 该电极材料仍然能保持初始比容量的47%(73 F/g), 说明La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵陶瓷具有较好的倍率性能。
中图分类号:
郭猛, 张丰年, 苗洋, 刘宇峰, 郁军, 高峰. La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3钙钛矿高熵陶瓷粉体的制备及其电学性能[J]. 无机材料学报, 2021, 36(4): 431-435.
GUO Meng, ZHANG Fengnian, MIAO Yang, LIU Yufeng, YU Jun, GAO Feng. Preparation and Electrical Properties of High Entropy La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Perovskite Ceramics Powder[J]. Journal of Inorganic Materials, 2021, 36(4): 431-435.
Sample | La | Co | Cr | Fe | Mn | Ni |
---|---|---|---|---|---|---|
La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 | 5 | 1 | 1 | 1 | 1 | 1 |
La(Cr0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Mn0.25)O3 | 4 4 4 4 4 | No 1 1 1 1 | 1 No 1 1 1 | 1 1 No 1 1 | 1 1 1 No 1 | 1 1 1 1 No |
表1 六组样品各元素组分摩尔之比
Table 1 Molar ratios of each element component of the six samples
Sample | La | Co | Cr | Fe | Mn | Ni |
---|---|---|---|---|---|---|
La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 | 5 | 1 | 1 | 1 | 1 | 1 |
La(Cr0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Mn0.25)O3 | 4 4 4 4 4 | No 1 1 1 1 | 1 No 1 1 1 | 1 1 No 1 1 | 1 1 1 No 1 | 1 1 1 1 No |
图1 不同温度煅烧所得La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3陶瓷粉体的XRD图谱
Fig. 1 XRD patterns of the La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 ceramic powders calcined at different temperatures
图4 800 ℃煅烧La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3样品的SEM照片(a), 1000 ℃煅烧La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3样品的SEM照片(b)及其元素的EDS分布(c~g)
Fig. 4 SEM image of sample La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 calcined at 800 ℃ (a), SEM image (b) and corresponding EDS element mapping (c-g) of La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 calcined at 1000 ℃
[1] | TSAI M H, YEH J W. High-entropy alloys: a critical review. Materials Research Letters, 2014,2(3):107-123. |
[2] | MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017,122:448-511. |
[3] | HUO W Y, ZHOU H, FANG F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Materials & Design, 2017,134:226-233. |
[4] | ABHISHEK S, QINGSONG W, ALEXANDER S, et al. High entropy oxides: fundamental aspects and electrochemical properties. Advanced Materials, 2019,31(26):1806236-1-9. |
[5] | ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015 , 6:8485. |
[6] |
ELINOR C, CSANADI TAMAS, SALVATORE G, et al. Processing and properties of high-entropy ultra-high temperature carbides. Scientific Reports, 2018,8(1):8609.
DOI URL PMID |
[7] | GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Scientific Reports, 2016,6(1):37946. |
[8] | POGREBNJAK A D, BAGDASARYAN A A, YAKUSHCHENKO I V, et al. The structure and properties of high-entropy alloys and nitride coatings based on them. Russian Chemical Reviews, 2014,83(11):1027-1061. |
[9] |
ZHANG R Z, GUCCI F, ZHU H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic Chemistry, 2018,57(20):13027-3033.
DOI URL PMID |
[10] | BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016,4(24) : 9536-541. |
[11] | CHEN H, QIU N, WU B Z, et al. Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties. RSC Advances, 2019,9(50):28908-28915. |
[12] | BÉRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi, 2016,10(4):328-333. |
[13] | ZHANG J J, YAN J Q, CALDER S, et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chemistry of Materials, 2019,31(10):3705-3711. |
[14] | CHEN H, FU J, ZHANG P F, et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A, 2018,6(24):11129-11133. |
[15] | CHEN H, LIN W W, ZHANG Z H, et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Materials Letters, 2019,1(1):83-88. |
[16] |
SARKAR A, LOHO C, VELASCO L, et al. Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium multivalency. Dalton Transactions, 2017,46(36):12167-12176.
DOI URL |
[17] |
GILD J, SAMIEE M, BRAUN J L, et al. High-entropy fluorite oxides. Journal of the European Ceramic Society, 2018,38(10):3578-3584.
DOI URL |
[18] |
WANG D, JIANG S D, DUAN C Q, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. Journal of Alloys and Compounds, 2020,844:156158.
DOI URL |
[19] |
MAO A Q, QUAN F, XIANG H Z, et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. Journal of Molecular Structure, 2019,1194:11-18.
DOI URL |
[20] |
WANG J B, STENZEL D, AZMI R, et al. Spinel to rock-salt transformation in high entropy oxides with Li incorporation. Electrochem, 2020,1(1):60-74.
DOI URL |
[21] |
LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582.
DOI URL |
[22] | CHEN H, ZHAO Z F, XIANG H M, et al. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: a novel high temperature stable thermal barrier material. Journal of Materials Science & Technology, 2020,48:57-62. |
[23] |
JIANG S C, HU T, GILD J, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018,142:116-120.
DOI URL |
[24] |
SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018,38(5):2318-2327.
DOI URL |
[25] |
IRFAN S, AJAZUNNABI M, JAMIL Y, et al. Synthesis of Mn1-xZnxFe2O4 ferrite powder by co-precipitation method. IOP Conference Series: Materials Science and Engineering, 2014,60:12048.
DOI URL |
[26] |
MASASHI, KOTOBUKI, MASAKI, et al. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method. Ionics, 2013,19(12):1945-1948.
DOI URL |
[27] |
ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceramics International, 2020,46(6):7430-7437.
DOI URL |
[28] |
ZHAO S H, YANG Z B, ZHAO X M. Green preparation and supercapacitive performance of NiCo2S4@ACF heterogeneous electrode materials. Journal of Inorganic Materials, 2019,34(2):130-136.
DOI URL |
[29] |
TAO K Y, LI P Y, KANG L T, et al. Facile and low-cost combustion-synthesized amorphous mesoporous NiO/carbon as high mass-loading pseudocapacitor materials. Journal of Power Sources, 2015,293:23-32.
DOI URL |
[30] |
MA X J, KONG L B, ZHANG W B, et al. Design and synthesis of 3D Co3O4@MMoO4 (M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochimica Acta, 2014,130:660-669.
DOI URL |
[31] |
ZHOU R, HAN C J, WANG X M. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. Journal of Power Sources, 2017,352:99-110.
DOI URL |
[32] |
HUO H H, ZHAO Y Q, XU C L. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. Journal of Materials Chemistry A, 2014,2(36):15111-15117.
DOI URL |
[33] | ZHANG L X, ZHENG W H, JIU H F, et al. The synthesis of NiO and NiCo2O4 nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor. Electrochimica Acta, 2016,215:212-222. |
[34] | ZHANG G X, CHEN Y M, HE Z N, et al. Surfactant dependence of nanostructured NiCo2S4 films on Ni foam for superior electrochemical performance. Journal of Inorganic Materials, 2018,33(3):289-294. |
[1] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[2] | 郭凌翔, 唐颖, 黄世伟, 肖博澜, 夏东浩, 孙佳. C/C复合材料高熵氧化物涂层抗烧蚀性能[J]. 无机材料学报, 2024, 39(1): 61-70. |
[3] | 王马超, 唐扬敏, 邓明雪, 周真真, 刘小峰, 王家成, 刘茜. 共沉淀法制备Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿及其近红外发光性能[J]. 无机材料学报, 2023, 38(9): 1083-1088. |
[4] | 付宇坤, 曾敏, 饶先发, 钟盛文, 张慧娟, 姚文俐. 锂离子电池高镍LiNi0.8Mn0.2O2正极材料的微波合成及其Co、Al共改性[J]. 无机材料学报, 2021, 36(7): 718-724. |
[5] | 朱嘉桐, 楼志豪, 张萍, 赵佳, 孟轩宇, 许杰, 高峰. 稀土钽酸盐(RETaO4)高熵陶瓷的制备与热学性能研究[J]. 无机材料学报, 2021, 36(4): 411-417. |
[6] | 桑玮玮, 张红松, 陈华辉, 温斌, 李新春. (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7高熵陶瓷的制备及热物理性能[J]. 无机材料学报, 2021, 36(4): 405-410. |
[7] | 张晓燕, 刘馨玥, 闫金华, 谷耀行, 齐西伟. 钙钛矿型(La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3高熵氧化物陶瓷的制备及性能研究[J]. 无机材料学报, 2021, 36(4): 379-385. |
[8] | 孙娅楠, 叶丽, 赵文英, 陈凤华, 邱文丰, 韩伟健, 刘伟, 赵彤. 液相聚合物前驱体法制备高熵碳化物纳米粉体[J]. 无机材料学报, 2021, 36(4): 393-398. |
[9] | 孙鲁超, 任孝旻, 杜铁锋, 罗颐秀, 张洁, 王京阳. 高熵化设计: 稀土硅酸盐材料关键性能优化新策略[J]. 无机材料学报, 2021, 36(4): 339-346. |
[10] | 郭晓杰, 鲍伟超, 刘吉轩, 王新刚, 张国军, 许钫钫. 高熵陶瓷固溶结构的透射电镜研究[J]. 无机材料学报, 2021, 36(4): 365-371. |
[11] | 刘子玉, TOCI Guido, PIRRI Angela, PATRIZI Barbara, 冯亚刚, 陈肖朴, 胡殿君, 田丰, 吴乐翔, VANNINIMatteo, 李江. 固体激光用Nd:Lu2O3透明陶瓷的制备和光学性能研究[J]. 无机材料学报, 2021, 36(2): 210-216. |
[12] | 黄新友, 刘玉敏, 刘洋, 李晓英, 冯亚刚, 陈肖朴, 陈鹏辉, 刘欣, 谢腾飞, 李江. 醇水共沉淀法制备Yb:YAG透明陶瓷及其性能研究[J]. 无机材料学报, 2021, 36(2): 217-224. |
[13] | 陈磊,王恺,苏文韬,张文,徐晨光,王玉金,周玉. 过渡金属非氧化物高熵陶瓷的研究进展[J]. 无机材料学报, 2020, 35(7): 748-758. |
[14] | 齐欣欣, 宋广平, 尹维龙, 王明福, 赫晓东, 郑永挺, 王荣国, 柏跃磊. 新型三元层状硼化物Cr4AlB4的物相稳定性和力学行为分析[J]. 无机材料学报, 2020, 35(1): 53-60. |
[15] | 李晓英, 刘强, 胡泽望, 姜楠, 石云, 李江. 碳酸氢铵与金属阳离子摩尔比对共沉淀法合成铽镓石榴石纳米粉体及陶瓷性能的影响[J]. 无机材料学报, 2019, 34(7): 791-797. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||