无机材料学报 ›› 2024, Vol. 39 ›› Issue (11): 1292-1300.DOI: 10.15541/jim20240085 CSTR: 32189.14.10.15541/jim20240085

• 研究快报 • 上一篇    

弹性应变对C、H、O在过渡金属氧化物表面吸附的影响

谢天1(), 宋二红2()   

  1. 1.上海交通大学 材料科学与工程学院, 上海 200240
    2.中国科学院 上海硅酸盐研究所, 上海 200050
  • 收稿日期:2024-02-28 修回日期:2024-06-12 出版日期:2024-11-20 网络出版日期:2024-06-24
  • 通讯作者: 宋二红, 副研究员. E-mail: ehsong@mail.sic.ac.cn
  • 作者简介:谢 天(1993-), 男, 博士. E-mail: xietian1993@sjtu.edu.cn

Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides

XIE Tian1(), SONG Erhong2()   

  1. 1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2024-02-28 Revised:2024-06-12 Published:2024-11-20 Online:2024-06-24
  • Contact: SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cn
  • About author:XIE Tian (1993-), male, PhD. E-mail: xietian1993@sjtu.edu.cn
  • Supported by:
    Science and Technology Commission of Shanghai Municipality(21ZR1472900);Science and Technology Commission of Shanghai Municipality(22ZR1471600)

摘要:

目前铂(Pt)基贵金属催化剂(PGMs)是应用最广泛的商业催化剂, 但存在成本高、储量低、易引发小分子中毒的问题, 过渡金属氧化物(TMOs)因在氧化环境中具有较好的稳定性和出色的催化性能而被视为PGMs的潜在替代品。本研究通过密度泛函理论(DFT)计算, 全面分析了弹性应变对TMOs表面上碳(C)、氢(H)和氧(O)吸附能的影响。系统探究了这些影响在四方结构(PtO2、PdO2)和六方结构(ZnO、CdO)中的作用, 以及它们与各自过渡金属的关系。结果显示, 在金属氧化物表面上, 最有利的吸附位点主要位于氧原子顶部或金属原子顶部, 而过渡金属则更倾向于面心立方(FCC)和六方密排(HCP)的空位。此外, 在弹性应变的影响下, 虽然TMOs和过渡金属对H和O的吸附能存在很大差异, 但弹性应变对TMOs上C、H和O吸附能的影响与过渡金属类似: 在压缩应变下吸附能增加、吸附减弱, 而在拉伸应变下吸附能减小、吸附增强。这种现象可以用基于吸附发生在金属原子顶部时的d带模型或吸附发生在O原子顶部时的p带模型来合理解释。因此, 调控弹性应变也可用于改变TMOs的催化特性。

关键词: 密度泛函理论, 吸附能, 弹性应变工程, 过渡金属氧化物, 催化剂

Abstract:

Platinum (Pt)-based noble metal catalysts (PGMs) are the most widely used commercial catalysts, but they have the problems of high cost, low reserves, and susceptibility to small-molecule toxicity. Transition metal oxides (TMOs) are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance. In this study, comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon (C), hydrogen (H) and oxygen (O) on TMOs was conducted. Based on density functional theory (DFT) calculations, these effects in both tetragonal structures (PtO2, PdO2) and hexagonal structures (ZnO, CdO), along with their respective transition metals were systematically explored. It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom, while face-centered cubic (FCC) and hexagonal close-packed (HCP) holes were preferred for the transition metals. Furthermore, under the influence of elastic strains, the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals. Despite these differences, the effect of elastic strains on the adsorption energies of C, H and O on TMOs mirrored those on transition metals: adsorption energies increased under compressive strains, indicating weaker adsorption, and decreased under tension strains, indicating stronger adsorption. This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom. Consequently, elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.

Key words: density functional theory, adsorption energy, elastic strain engineering, transition metal oxide, catalyst

中图分类号: