[1] |
KUMAR V, BALASUBRAMANIAN K. Progress update on failure mechanisms of advanced thermal barrier coatings: a review. Progress in Organic Coatings, 2016,90:54-82.
|
[2] |
DAROLIA R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. International Materials Reviews, 2013,58(6):315-348.
|
[3] |
CHENG XIAO-GE, ZHANG HONG-SONG, LIU YAN-XU, et al. Thermal properties of RE2AlTaO7 (RE=Gd and Yb) oxide. Ceramics International, 2018,44(9):10762-10765.
|
[4] |
LI CHUANG, ZHANG YI, HU DING-YU, et al. Effects of thermal barrier ceramic coating materials on diesel engine piston. Surface Technology, 2017,46(2):149-153.
|
[5] |
LIU QIAO-MU, HUANG SHUN-ZHOU, HE AI-JIE, et al. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. Journal of Materials Science & Technology, 2019,35(12):2814-2823.
|
[6] |
LI GUANG-RONG, XIE HUA, YAN GGUAN-JUN, et al. A comprehensive sintering mechanism for TBCs- part II: multiscale multipoint interconnection-enhanced initial kinetics. Journal of the American Ceramic Society, 2017,100(9):4240-4251.
|
[7] |
ZHANG HONG-SONG, TONG YU-PING, YANG XIAN-FENG, et al. Synthesis and thermophysical performances of complex Ca3Ln3 Ti7Ta2O26.5 (Ln=Dy and Er) oxide. Ceramics International, 2020,46(3):2862-2867.
|
[8] |
LIU ZHOU-YANG, YU JIN-XIN, LI QIANG. Finite element sim- ulation of ceramic layer/TGO interfacial crack on thermal barrier coating. Surface technology, 2017,46(7):70-76.
|
[9] |
ZHANG HAO-MING, YAN FENG, CHEN XIAO-GE, et al. Thermal properties of La3TaO7 and La2AlTaO7 oxides. Ceramics International, 2017,43(1):755-759.
|
[10] |
WANG SHI-MIN, LI BIN, SUN DE-BING, et al. Thermal and mechanical performances of Nd2LaTaO7 oxide. Ceramics International, 2019,45(8):10718-10721.
|
[11] |
CHEN XIAO-GE, TANG AN, ZHANG HONG-SONG, et al. Thermal conductivity and expansion coefficient of Ln2LaTaO7 (Ln=Er and Yb) oxides for thermal barrier coating applications. Ceramics International, 2016,42(12):13491-13496.
|
[12] |
WU FU-SHUO, WU PENG, CHEN LIN, et al. Structure and thermal properties of Al2O3-doped Gd3TaO7 as potential thermal barrier coating. Journal of the European Ceramic Society, 2019,39(6):2210-2214.
|
[13] |
CHEN LIN, WU PENG, SONG PENG, et al. Synthesis, crystal structure and thermophysical properties of (La1-xEux)3TaO7 ceramics. Ceramics International, 2018,44(14):16273-16281.
|
[14] |
CHEN LIN, WU PENG, FENG JING. Optimization thermophysical properties of TiO2 alloying Sm3TaO7 ceramics as promising thermal barrier coatings. International Journal of Applied Ceramic Technology, 2019,16(1):230-242.
|
[15] |
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015,6(1):8485-8485.
|
[16] |
YEH JIEN-WEI, CHANG SHOU-YI, HONG YU-DER, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co- Cr-Fe-Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 2007,103(1):41-46.
|
[17] |
ZHAO ZI-FAN, XIANG HUI-MIN, PENG ZHI-JIAN, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. Journal of Materials Science & Technology, 2019,35(11):2647-2651.
|
[18] |
ZHAO ZI-FAN, XIANG HUI-MIN, DAI FU-ZHI, et al. (La0.2 - Ce0.2Nd0.2Sm0.2Eu0.2)2PO4: a high entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3 . Journal of Materials Science & Technology, 2019,35(12):2892-2896.
|
[19] |
LI FEI, ZHOU LIN, LIU JI-XUAN, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582.
|
[20] |
REN XIAO-MIN, TIAN ZHI-LIN, ZHANG JIE, et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material. Scripta Materialia, 2019,168(15):47-50.
|
[21] |
REN KE, WANG QIAN-KUN, SHAO GANG, et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Materialia, 2020,178(15):382-386.
|
[22] |
ZHAO ZI-FAN, CHEN HENG, XIANG HUI-MIN, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. Journal of Advanced Ceramics, 2020,9(3):303-311.
|
[23] |
WANG CHANG-AN, LU HAO-RAN, HUANG ZE-YA, et al. Enhanced anti-deliquescent property and ultralow thermal conductivity of magnetoplumbite-type LnMeAl11O19 materials for thermal barrier coating. Journal of the American Ceramic Society, 2018,101(3):1095-1104.
DOI
URL
|
[24] |
GU JUN-FENG, ZOU JI, ZHANG FAN, et al. Research progress in high entropy ceramic materials. Materials China, 2019,38(9):855-865, 886.
|
[25] |
WU JIE, WEI XUE-ZHENG, PADTURE N P, et al. Low-thermal conductivity rare earth zirconates for potential thermal barrier coating applications. Journal of the American Ceramic Society, 2002,85(12):3031-3035.
DOI
URL
|
[26] |
SANG WEI-WEI, YANG SHU-SEN, KANG YU, et al. Numerical simulation of thermal shock stress of Sm2Ce2O7 thermal barrier coatings with different matrix materials. China Ceramics, 2020,56(2):45-51.
|
[27] |
ARAI Y, INOUE R. Detection of small delamination in mullite/ Si/SiC model EBC system by pulse thermography. Journal of Advanced Ceramics, 2019,8(3):438-447.
|