[1] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303.
|
[2] |
CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science Engineering A, 2004, 375-377(1):213-218.
|
[3] |
RANGANATHAN. Alloyed pleasures: multimetallic cocktails. Current Science, 2003,85(5):1404-1406.
|
[4] |
王晓鹏, 孔凡涛. 高熵合金及其他高熵材料研究新进展. 航空材料学报, 2019,39(6):1-19.
|
[5] |
ZHOU Y J, ZHANG Y, WANG Y L, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied Physics Letters, 2007,90(18):181904-1-3.
DOI
URL
|
[6] |
ZHOU W, FU L M, LIU P, et al. Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics, 2017,85:90-97.
|
[7] |
SZKLARZ Z, LEKKI J, BOBROWSKI P, et al. The effect of SiC nanoparticles addition on the electrochemical response of mechanically alloyed CoCrFeMnNi high entropy alloy. Materials Chemistry and Physics, 2018,215:385-392.
|
[8] |
王睿鑫, 唐宇, 李永彦, 等. NbZrTiTa高熵合金的高温氧化行为. 稀有金属材料与工程, 2020,49(7):2417-2424.
|
[9] |
MISHRA K, SAHAY RAJESH P P, ROHIT R S. Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy. Journal of Materials Science, 2019,54(5):4433-4443.
|
[10] |
陈克丕, 李泽民, 马金旭, 等. 高熵陶瓷材料研究进展与展望. 陶瓷学报, 2020,41(2):157-163.
|
[11] |
顾俊峰, 邹冀, 张帆, 等. 高熵陶瓷材料研究进展. 中国材料进展, 2019,38(9):855-865.
|
[12] |
CHEN H, XIANG H M, DAI F Z, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 2019,35(8):1700-1705.
|
[13] |
GILD J, BRAUN J, KAUFMANN K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 2019,5(3):337-343.
|
[14] |
QIN Y, LIU J X, LI F, et al. A high entropy silicide by reactive spark plasma sintering. Journal of Advanced Ceramics, 2019,8(1):148-152.
|
[15] |
LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 2020,9(4):503-510.
|
[16] |
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015,6:8485.
URL
PMID
|
[17] |
SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018,38(5):2318-2327.
|
[18] |
CHEN K P, PEI X T, TANG L, et al. A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 2018,38(11):4161-4164.
|
[19] |
DABROWA J, STYGAR M, MIKUŁA A, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Materials Letters, 2018,216:32-36.
|
[20] |
JIANG S C, HU T, GILD J, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018,142:116-120.
|
[21] |
DONG Y, REN K, LU Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites. Journal of the European Ceramic Society, 2019,39(7):2574-2579.
|
[22] |
LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582.
|
[23] |
ZHANG M, ZHANG X, DAS S, et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite. Journal of Materials Chemistry C, 2019,7(34):10551-10560.
|
[24] |
ZHANG M, ZHANG X Y, QI X W, et al. Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3-BaTiO3-LaFeO3 ceramics. Ceramics International, 2018,44(17):21269-21276.
|
[25] |
DONG G X, MA S W, DU J, et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceramics International, 2009,35(5):2069-2075.
|
[26] |
KREUER K D. Proton-conducting oxides. Annual Review of Materials Research, 2003,33(1):333-359.
|
[27] |
WRIGHTON M S, MORSE D L, ELLIS A B, et al. Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode. ChemInform, 1976,7(13):44-48.
|
[28] |
JI L, MCDANIEL M D, WANG S J, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nature Nanotechnology, 2015,10(1):84-90.
|
[29] |
BIESUZ M, FU S, DONG J, et al. High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3-x perovskite synthesis by reactive spark plasma sintering. Journal of Asian Ceramic Societies, 2019,7(2):127-132.
|
[30] |
ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceramics International, 2020,46(6):7430-7437.
|
[31] |
BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016,4(24):9536-9541.
|
[32] |
ZHANG Y, YANG X, LIAW P K. Alloy design and properties optimization of high-entropy alloys. JOM, 2012,64(7):830-838.
|
[33] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides . Acta Crystallographica Section A, Foundations of Crystallography, 1976,A32(5):751-767.
|
[34] |
PAN W G, CAO M H, HAO H, et al. Defect engineering toward the structures and dielectric behaviors of (Nb, Zn) co-doped SrTiO3 ceramics. Journal of the European Ceramic Society, 2020,40(1):49-55.
|
[35] |
MERINO N A, BARBERO B P, ELOY P, et al. La1-xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS. Applied Surface Science, 2006,253(3):1489-1493.
|
[36] |
OSENCIAT N, BÉRARDAN D, DRAGOE D, et al. Charge compensation mechanisms in Li-substituted high-entropy oxides and influence on Li superionic conductivity. Journal of the American Ceramic Society, 2019,102(10):6156-6162.
|
[37] |
WU J G, WANG J. Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films. Journal of the American Ceramic Society, 2010,93(9):2795-2803.
|
[38] |
BAI Y L, ZHAO H, CHEN J, et al. Strong magnetoelectric coupling effect of BiFeO3/Bi5Ti3FeO15 bilayer composite films. Ceramics International, 2016,42(8):10304-10309.
|