[1] |
YEH JIEN-WEI, CHEN SWE-KAI, LIN SU-JIEN, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloydesign concepts andoutcomes. Advanced Engineering Materials, 2004,6:299-303.
|
[2] |
CANTOR B, CHANG ITH, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004,377:213-218.
|
[3] |
CHEN LEI, WANG KAI, SU WEN-TAO, et al. Research progress of transition metal non-oxide high-entropy ceramics. Journal of Inorganic Materials, 2020,35(7):748-758.
|
[4] |
OSES C, TOHER C, CURTAROLO S. High-entropy ceramics. Nature Reviews Materials, 2020,5(4):295-309.
|
[5] |
GILD J, ZHANG YUAN-YAO, HARRINGTON T, et al. High- entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Scientific Reports, 2016,6(1):37946.
|
[6] |
ZHANG RUI-ZHI, REECE M J. Review of high entropy ceramics: design, synthesis, structure and properties. Journal of Materials Chemistry A, 2019,7(39):22148-22162.
|
[7] |
SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Communications, 2018,9(1):4980.
URL
PMID
|
[8] |
顾俊峰, 邹冀, 张帆, 等. 高熵陶瓷材料研究进展. 中国材料进展, 2019,38(9):855-886.
|
[9] |
YE BEI-LIN, WEN TONG-QI, CHU YAN-HUI. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. Journal of the American Ceramic Society, 2019,103(1):500-507.
|
[10] |
YAN XUE-LIANG, CONSTANTIN L, LU YONG-FENG, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 2018,101(10):4486-4491.
|
[11] |
ROST C M, BORMAN T, HOSSAIN M D, et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Materialia, 2020,196:231-239.
|
[12] |
CHEN HENG, XIANG HUI-MIN, DAI FU-ZHI, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 2019,35(8):1700-1705.
|
[13] |
CSANÁDI T, VOJTKO M, DANKHÁZI Z, et al. Small scale fracture and strength of high-entropy carbide grains during microcantilever bending experiments. Journal of the European Ceramic Society, 2020,40(14):4774-4782.
|
[14] |
WEI XIAO-FENG, LIU JI-XUAN, LI FEI, et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 2019,39(10):2989-2994.
|
[15] |
PENG CHONG, GAO XIANG, WANG MING-ZHI, et al. Diffusion- controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Applied Physics Letters, 2019,114(1):011905-1-5.
|
[16] |
MOSKOVSKIKH D O, VOROTILO S, SEDEGOV A S, et al. High- entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering. Ceramics International, 2020,46(11):19008-19014.
|
[17] |
SURE J, SRI MAHA VISHNU D, KIM H K, et al. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angewandte Chemie International Edition, 2020,59(29):11830-11835.
URL
PMID
|
[18] |
WANG KAI, CHEN LEI, XU CHEN-GUANG, et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. Journal of Materials Science & Technology, 2020,39:99-105.
|
[19] |
CHICARDI E, GARCÍA-GARRIDO C, GOTOR F J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceramics International, 2019,45(17):21858-21863.
|
[20] |
CHICARDI E, GARCÍA-GARRIDO C, HERNÁNDEZ-SAZ J, et al. Synthesis of all equiatomic five-transition metals high entropy carbides of the IVB (Ti, Zr, Hf) and VB (V, Nb, Ta) groups by a low temperature route. Ceramics International, 2020,46(13):21421-21430.
DOI
URL
|
[21] |
GILD J, KAUFMANN K, VECCHIO K, et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scripta Materialia, 2019,170:106-110.
|
[22] |
CASTLE E, CSANADI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Scientific Reports, 2018,8(1):8609.
URL
PMID
|
[23] |
FENG LUN, FAHRENHOLTZ W G, HILMAS G E, et al. Synthesis of single-phase high-entropy carbide powders. Scripta Materialia, 2019,162:90-93.
|
[24] |
YE BEI-LIN, NING SHAN-SHAN, LIU DA, et al. One-step synthesis of coral-like high-entropy metal carbide powders. Journal of the American Ceramic Society, 2019,102(10):6372-6378.
|
[25] |
ZHOU JIE-YANG, ZHANG JIN-YONG, ZHANG FAN, et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceramics International, 2018,44(17):22014-22018.
|
[26] |
LU YAN, SUN YA-NAN, ZHANG TU-ZI, et al. Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: synthesis, microstructure and properties. Journal of the European Ceramic Society, 2019,39(2/3):205-211.
|
[27] |
SUN YA-NAN, YANG CHUN-MING, LU YAN, et al. Transformation of metallic polymer precursor into nanosized HfTaC2 ceramics. Ceramics International, 2020,46(5):6022-6028.
|
[28] |
LI FEI, LU YING, WANG XIN-GANG, et al. Liquid precursor- derived high-entropy carbide nanopowders. Ceramics International, 2019,45(17):22437-22441.
|
[29] |
LIU HONG-HUA, DU BIN, CHU YAN-HUI. Synthesis of the ternary metal carbide solid-solution ceramics by polymer-derived- ceramic route. Journal of the American Ceramic Society, 2020,103(5):2970-2974.
|
[30] |
DU BIN, LIU HONG-HUA, CHU YAN-HUI. Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders. Journal of the American Ceramic Society, 2020,103(8):4063-4068.
|
[31] |
LU YAN, YE LI, HAN WEI-JIAN, et al. Synthesis, characterization and microstructure of tantalum carbide-based ceramics by liquid polymeric precursor method. Ceramics International, 2015,41(9):12475-12479.
|
[32] |
LIU DAN, CAI TAO, QIU WEN-FENG, et al. Synthesis, characterization, and microstructure of ZrC/SiC composite ceramics via liquid precursor conversion method. Journal of the American Ceramic Society, 2014,97(4):1242-1247.
|