无机材料学报 ›› 2024, Vol. 39 ›› Issue (1): 71-80.DOI: 10.15541/jim20230333 CSTR: 32189.14.10.15541/jim20230333
所属专题: 【信息功能】介电、铁电、压电材料(202409)
陈海燕1(), 唐志鹏1, 尹良君1(
), 张林博1(
), 徐鑫2
收稿日期:
2023-07-24
修回日期:
2023-09-19
出版日期:
2024-01-20
网络出版日期:
2023-10-07
通讯作者:
尹良君, 副教授. E-mail: ylj@mail.ustc.edu.cn;作者简介:
陈海燕(1976-), 男, 研究员. E-mail: chenhy@uestc.edu.cn
基金资助:
CHEN Haiyan1(), TANG Zhipeng1, YIN Liangjun1(
), ZHANG Linbo1(
), XU Xin2
Received:
2023-07-24
Revised:
2023-09-19
Published:
2024-01-20
Online:
2023-10-07
Contact:
YIN Liangjun, associate professor. E-mail: ylj@mail.ustc.edu.cn;About author:
CHEN Haiyan (1976-), male, professor. E-mail: chenhy@uestc.edu.cn
Supported by:
摘要:
随着5G无线通信与低频雷达侦察技术的飞速发展, 低频电磁波辐射已成为当代的严重问题。目前, 中高频段吸波材料的研究已趋于成熟, 而设计低频段吸波材料仍面临巨大的挑战, 亟待研究者们解决。基于四分之一波长相消机制, 本研究设计了0.5~3 GHz低频段复合吸波材料。采用简单的一步水热法, 诱导铁氧体在羰基铁粉与碳纳米管表面生长, 制备出CIPs@Mn0.8Zn0.2Fe2O4-CNTs三元复合材料, 对比研究了碳纳米管含量对材料吸收峰频率的影响。实验结果表明, 引入碳纳米管, 一方面为材料带来了界面极化、偶极极化等额外的损耗机制, 增加了材料的衰减系数; 另一方面基于四分之一波长相消机制, 高介电与高磁导率的耦合, 使材料在低频段获得良好的阻抗匹配。最终, 在4 mm厚度下, 样品分别在2.11与1.75 GHz处, 获得了-40.8与-32.1 dB的反射损耗, -10 dB带宽分别为1.70~2.70 GHz和1.40~2.20 GHz。该复合材料制备工艺简单, 低频吸收性能良好, 具有很大的应用潜力, 为开发更有效的低频吸波材料提供了新的思路和方法。
中图分类号:
陈海燕, 唐志鹏, 尹良君, 张林博, 徐鑫. CIPs@Mn0.8Zn0.2Fe2O4-CNTs复合材料低频吸波性能研究[J]. 无机材料学报, 2024, 39(1): 71-80.
CHEN Haiyan, TANG Zhipeng, YIN Liangjun, ZHANG Linbo, XU Xin. Low-frequency Microwave Absorption of CIPs@Mn0.8Zn0.2Fe2O4-CNTs Composites[J]. Journal of Inorganic Materials, 2024, 39(1): 71-80.
图8 样品的损耗能力分析
Fig. 8 Analyses of loss capacities of samples (a-d) Cole-Cole curves; (e) Eddy current loss curves; (f) Attenuation constant curves; Colorful figures are available on website
[1] | WANG C L. Harm of electromagnetic radiation pollution and its protection measures. Construction & Design for Engineering, 2017, 4: 131. |
[2] |
NASRI K, DAGHFOUS D, LANDOULSI A. Effects of microwave (2.45 GHz) irradiation on some biological characters of Salmonella typhimurium. Comptes Rendus Biologies, 2013, 336(4):194.
DOI PMID |
[3] |
ZHANG Z, WANG F, ZHANG X Q, et al. Recent advance of broadband and thin microwave absorbing material for low frequency. Journal of Functional Materials, 2019, 50(6):6038.
DOI |
[4] |
TANG Y T, YIN P F, ZHANG L M, et al. Novel carbon encapsulated zinc ferrite/MWCNTs composite: preparation and low- frequency microwave absorption investigation. Ceramics International, 2020, 46(18):28250.
DOI URL |
[5] | SONG S, ZHANG A, CHEN L, et al. A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption. Carbon, 2021, 176: 279. |
[6] | ZOU Z, NING M, LEI Z, et al. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2-18 GHz. Carbon, 2022, 193: 182. |
[7] |
DOSOUDIL R, LISY K, KRUZELAK J. Permeability, permittivity and EM-wave absorption properties of polymer composites filled with MnZn ferrite and carbon black. Acta Physica Polonica A, 2020, 137(5):827.
DOI URL |
[8] |
LEI Y, YAO Z, LI S, et al. Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceramics International, 2020, 46(8):10006.
DOI URL |
[9] |
DOSOUDIL R, USAKOVA M. High-frequency absorbing performances of carbonyl iron/MnZn ferrite/PVC polymer composites. Acta Physica Polonica A, 2017, 131(4):687.
DOI URL |
[10] |
MU Y, MA Z H, LIANG H S, et al. Ferrite-based composites and morphology-controlled absorbers. Rare Metals, 2022, 41(9):2943.
DOI |
[11] |
YE X, CHEN Z, AI S, et al. Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity. Journal of Advanced Ceramics, 2019, 8(4):479.
DOI |
[12] | MAO B X, XIA X S, QIN R R, et al. Microstructure evolution and microwave absorbing properties of novel double-layered SiC reinforced SiO2aerogel. Journal of Alloys and Compounds, 2023, 936: 168314. |
[13] | BURHANNUDDIN N L, NORDIN N A, MAZLAN S A, et al. Physicochemical characterization and rheological properties of magnetic elastomers containing different shapes of corroded carbonyl iron particles. Scientific Reports, 2021, 11: 868. |
[14] | HAN M Y, ZHOU M, WU Y, et al. Constructing angular conical FeSiAl/SiO2 composites with corrosion resistance for ultra-broadband microwave absorption. Journal of Alloys and Compounds, 2022, 902: 163792. |
[15] | JIN D, DU Y G, YANG X L, et al. Facile synthesis of Ti3C2Tx- MXene composite with polyhedron Fe3O4/carbonyl iron toward microwave absorption. Journal of Materials Science: Materials in Electronics, 2021, 32: 23762. |
[16] | MA T, CUI Y, SHA Y L, et al. Facile synthesis of hierarchically porous rGO/MnZn ferrite composites for enhanced microwave absorption performance. Synthetic Metals, 2020, 265: 116407. |
[17] | MIN D D, ZHOU W C, LUO F, et al. Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/ Fe3O4 composite. Journal of Magnetism and Magnetic Materials, 2017, 435: 26. |
[18] | CHEN L, GU Z Z, ZHANG M X. Microwave absorbing property of thin coating in the broadband low-frequency range. Materials Science Forum, 2018, 916: 33. |
[19] | LIU S W, YUAN C Z, MA K M, et al. Preparation and low- frequency microwave-absorbing properties of MWCNTs/Co-Ni/ Fe3O4 hybrid material. Functional Materials Letters, 2016, 9: 1650035. |
[20] |
SU X G, WANG J, ZHANG X X, et al. One-step preparation of CoFe2O4/FeCo/graphite nano-sheets hybrid composites with tunable microwave absorption performance. Ceramics International, 2020, 46(8):12353.
DOI URL |
[21] | LI W, LE C, LV J, et al. Electromagnetic and oxidation resistance properties of core-shell structure flaked carbonyl iron powder@SiO2 nanocomposite. Physica Status Solidi(a), 2017, 214(6):1600747. |
[22] | SONG P, LIU B, QIU H, et al. MXenes for polymer matrix electromagnetic interference shielding composites: a review. Composites Communications, 2021, 24: 100653. |
[23] |
YIN P, ZHANG L, WU H, et al. Two-step solvothermal synthesis of (Zn0.5Co0.5Fe2O4/Mn0.5Ni0.5Fe2O4)@C-MWCNTs hybrid with enhanced low frequency microwave absorbing performance. Nanomaterials, 2019, 9(11):1601.
DOI URL |
[24] |
SNOEK J. Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physica, 1948, 14(4):207.
DOI URL |
[25] | ACHER O, DUBOURG S. Generalization of Snoek's law to ferromagnetic films and composites. Physical Review B, 2008, 77: 104440. |
[26] |
HAN R, HAN X H, QIAO L, et al. Enhanced microwave absorption of ZnO-coated planar anisotropy carbonyl-iron particles in quasimicrowave frequency band. Materials Chemistry and Physics, 2011, 128(3):317.
DOI URL |
[27] | OH J W, YOON Y W, HEO J, et al. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation. Talanta, 2016, 147: 453. |
[28] | YIN P, ZHANG L, TANG Y, et al. Earthworm-like (Co/CoO)@C composite derived from MOF for solving the problem of low- frequency microwave radiation. Journal of Alloys and Compounds, 2021, 881: 160556. |
[29] | LAN L, ZHENG Y P, ZHANG A B, et al. Study of ionic solvent- free carbon nanotube nanofluids and its composites with epoxy matrix. Journal of Nanoparticle Research, 2012, 14: 735. |
[30] |
NICHOLAS Z, VICTOR R R, NAVADEEP S, et al. Heat generation in magnetic hyperthermia by manganese ferrite-based nanoparticles arises from Néel collective magnetic relaxation. ACS Applied Nano Materials, 2022, 5(5):7521.
DOI URL |
[31] | WANG F, LI X, CHEN Z, et al. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chemical Engineering Journal, 2021, 405: 126676. |
[32] |
PRODROMAKIS T, PAPAVASSILIOU C. Engineering the Maxwell-Wagner polarization effect. Applied Surface Science, 2009, 255(15):6989.
DOI URL |
[33] |
YIN P, ZHANG L, JIANG Y, et al. Recycling of waste straw in sorghum for preparation of biochar/(Fe,Ni) hybrid aimed at significant electromagnetic absorbing of low-frequency band. Journal of Materials Research and Technology, 2020, 9(6):14212.
DOI URL |
[34] | PENG H, MA X, LIU C, et al. Facile fabrication of indium tin oxide/nanoporous carbon composites with excellent low-frequency microwave absorption. Journal of Alloys and Compounds, 2021, 889: 161636. |
[35] | MA Z, ZHANG Y, CAO C, et al. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Physica B-Condensed Matter, 2011, 406: 4620. |
[1] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[2] | 何思哲, 王俊舟, 张勇, 费嘉维, 吴爱民, 陈意峰, 李强, 周晟, 黄昊. 高频低损耗的Fe/亚微米FeNi软磁复合材料[J]. 无机材料学报, 2024, 39(8): 871-878. |
[3] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[4] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[5] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[6] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[7] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[8] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[9] | 李广宇, 岳一凡, 王波, 张程煜, 索涛, 李玉龙. 2D-SiC/SiC复合材料的弹丸冲击损伤及冲击后拉伸性能[J]. 无机材料学报, 2024, 39(5): 494-500. |
[10] | 薛轶凡, 李玮洁, 张中伟, 庞旭, 刘愚. 碳纤维布表面PyC界面相微观结构及均匀性的工艺调控[J]. 无机材料学报, 2024, 39(4): 399-408. |
[11] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[12] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[13] | 马永杰, 刘永胜, 关康, 曾庆丰. CH4+C2H5OH+Ar体系热解的气相动力学研究[J]. 无机材料学报, 2024, 39(11): 1235-1244. |
[14] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[15] | 吴军, 徐培飞, 荆瑞, 张大海, 费庆国. SiC/SiC复合材料层板低速冲击及其剩余强度试验研究[J]. 无机材料学报, 2024, 39(1): 51-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||