无机材料学报 ›› 2024, Vol. 39 ›› Issue (12): 1357-1366.DOI: 10.15541/jim20240249 CSTR: 32189.14.10.15541/jim20240249

所属专题: 【结构材料】热障与环境障涂层(202412)

• 研究论文 • 上一篇    下一篇

Ti掺杂Hf(Zr)B2-SiC抗烧蚀涂层的制备及其抗烧蚀机理

郭晓阳1(), 张小琳1, 姜岩1(), 田原1, 耿志2   

  1. 1.沈阳化工大学 辽宁省特种功能材料合成与制备重点实验室, 沈阳 110142
    2.沈阳新瑞特机电设备有限公司, 沈阳 110015
  • 收稿日期:2024-05-17 修回日期:2024-07-13 出版日期:2024-07-16 网络出版日期:2024-07-16
  • 通讯作者: 姜 岩, 讲师. E-mail: na_jiangyan@sina.com
  • 作者简介:郭晓阳(1999-), 男, 硕士研究生. E-mail: guoxiaoyang707722@163.com
  • 基金资助:
    辽宁省教育厅青年项目(JYTQN2023371)

Ti-doped Hf(Zr)B2-SiC Anti-ablation Coatings: Preparation and Ablation Resistance Mechanism

GUO Xiaoyang1(), ZHANG Xiaolin1, JIANG Yan1(), TIAN Yuan1, GENG Zhi2   

  1. 1. Key Laboratory of Special Functional Materials Synthesis and Preparation in Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
    2. Shenyang Xinruite Electromechanical Equipment Co. Ltd., Shenyang 110015, China
  • Received:2024-05-17 Revised:2024-07-13 Published:2024-07-16 Online:2024-07-16
  • Contact: JIANG Yan, lecturer. E-mail: na_jiangyan@sina.com
  • About author:GUO Xiaoyang (1999-), male, Master candidate. E-mail: guoxiaoyang707722@163.com
  • Supported by:
    Liaoning Provincial Department of Education Youth Project(JYTQN2023371)

摘要:

为了提高碳基材料在高温含氧环境下的抗烧蚀性能, 以石墨为基体, 采用浆料法和反应熔渗相结合的方式在其表面制备了Ti掺杂HfB2-SiC、ZrB2-SiC复合涂层。研究了涂层的物相组成、微观形貌和元素分布, 考察了涂层在2300 ℃的抗烧蚀能力。结果表明:渗硅后的Ti掺杂Hf(Zr)B2-SiC复合涂层结构十分致密, HfTiB2、ZrTiB2陶瓷相镶嵌于涂层中, 残余硅连续分布在Hf(Zr)B2、SiC颗粒周围, 涂层与基体结合良好且无缺陷; 在2300 ℃烧蚀480 s后, HfTiB2-SiC、ZrTiB2-SiC复合涂层试样的质量烧蚀率分别为-2.71×10-3和-4.20×10-1 mg/s(略微增重), 线烧蚀率分别为1.88×10-4和3.70×10-4 μm/s。HfTiB2-SiC复合涂层烧蚀后表面形成了以HfTiO4-HfO2为骨架、TiO2和SiO2为填充相的Hf-Ti-Si-O复相氧化层, 而ZrTiB2-SiC复合涂层烧蚀后表面形成了以ZrTiO4和ZrO2为镶嵌相、SiO2玻璃为半连续相, 且带有微孔的Zr-Ti-Si-O复相氧化层。其中, HfTiO4、HfO2、ZrTiO4、ZrO2等高熔点相可以有效抵抗高温火焰的冲刷, 高温下具有流动性的TiO2、SiO2可以填充烧蚀产生的孔隙缺陷并阻塞氧扩散通道, 防止氧向涂层内部和基体扩散, 二者共同作用实现了陶瓷涂层优异的抗烧蚀防护效果。

关键词: 陶瓷涂层, 抗烧蚀性能, 浆料法, 反应熔渗, 复相玻璃层

Abstract:

In order to improve the ablation resistance of carbon-based materials in elevated-temperature and oxygenated environments, Ti-doped HfB2-SiC and ZrB2-SiC composite coatings were prepared on the surface of graphite via a hybrid method involving slurry dipping and reactive infiltration. Phase compositions, microstructures, and element distributions of the composite coatings were studied, and anti-ablation ability of the coating was evaluated at 2300 ℃. Results show that structures of Ti-doped Hf(Zr)B2-SiC composite coatings are very dense after silicon infiltration. Both HfTiB2 and ZrTiB2 ceramic phases are embedded in the coatings, which exhibit no defects and establish robust bonds with the graphite substrates. Residual silicon continuously distributes around Hf(Zr)B2 and SiC particles. After undergoing ablation at 2300 ℃ for 480 s, the mass ablation rates of HfTiB2-SiC and ZrTiB2-SiC composite coating samples are -2.71×10-3 and -4.20×10-1 mg/s, respectively, indicating a slight weight gain. The corresponding line ablation rates are 1.88×10-4 and 3.70×10-4 μm/s, respectively. Following ablation, a Hf-Ti-Si-O multiphase oxide layer composed of HfTiO4-HfO2 as the skeleton and TiO2-SiO2 as the filling phase forms on the surface of HfTiB2-SiC coating. In contrast, a Zr-Ti-Si-O multiphase oxide layer with some micropores, comprising embedded ZrTiO4 and ZrO2 phases and a semi-continuous SiO2 glass phase, develops on the ablative surface of ZrTiB2-SiC coating. High-melting-point phases, such as HfTiO4, HfO2, ZrTiO4, and ZrO2, effectively counteract high-temperature flame erosion. Meanwhile, TiO2 and SiO2, possessing high-temperature fluidity, can seal the pore defects generated by erosion and thereby preventing oxygen from diffusing into the coatings and substrates. Therefore, the synergy between high-temperature skeletons and filling phases significantly enhances the anti-ablation protection of coatings.

Key words: ceramic coating, ablation resistance, slurry dipping, reaction infiltration, multiphase glass layer

中图分类号: