Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (4): 393-398.DOI: 10.15541/jim20200391
Special Issue: 【结构材料】高熵陶瓷
• RESEARCH PAPER • Previous Articles Next Articles
SUN Yanan1(), YE Li1, ZHAO Wenying1, CHEN Fenghua1, QIU Wenfeng2, HAN Weijian1, LIU Wei3, ZHAO Tong1()
Received:
2020-07-13
Revised:
2020-10-27
Published:
2021-04-20
Online:
2020-11-05
Contact:
ZHAO Tong, professor. E-mail: tzhao@iccas.ac.cn
About author:
SUN Yanan(1989-), female, PhD candidate. E-mail: sunyanan@iccas.ac.cn
Supported by:
CLC Number:
SUN Yanan, YE Li, ZHAO Wenying, CHEN Fenghua, QIU Wenfeng, HAN Weijian, LIU Wei, ZHAO Tong. Synthesis of High Entropy Carbide Nano Powders via Liquid Polymer Precursor Route[J]. Journal of Inorganic Materials, 2021, 36(4): 393-398.
Item | Metal content/wt% | Yield/ wt% | Viscosity/(mPa∙s) | |
---|---|---|---|---|
1 | 2 | |||
(Ti, Zr, Hf, Ta)C | 28 | 28.6 | 150 | 162 |
Table 1 Metal content, yield and viscosity of PHEC
Item | Metal content/wt% | Yield/ wt% | Viscosity/(mPa∙s) | |
---|---|---|---|---|
1 | 2 | |||
(Ti, Zr, Hf, Ta)C | 28 | 28.6 | 150 | 162 |
Fig. 5 Characterization of pyrolysis process for PHEC (A) XRD patterns of products pyrolyzed at different temperatures; (B) Enlarged images of XRD patterns of products pyrolyzed at 1400~ 1800 ℃; (C) Lattice parameter and crystallite size of samples pyrolyzed at 1400-1800 ℃
[1] | YEH JIEN-WEI, CHEN SWE-KAI, LIN SU-JIEN, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloydesign concepts andoutcomes. Advanced Engineering Materials, 2004,6:299-303. |
[2] | CANTOR B, CHANG ITH, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004,377:213-218. |
[3] | CHEN LEI, WANG KAI, SU WEN-TAO, et al. Research progress of transition metal non-oxide high-entropy ceramics. Journal of Inorganic Materials, 2020,35(7):748-758. |
[4] | OSES C, TOHER C, CURTAROLO S. High-entropy ceramics. Nature Reviews Materials, 2020,5(4):295-309. |
[5] | GILD J, ZHANG YUAN-YAO, HARRINGTON T, et al. High- entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Scientific Reports, 2016,6(1):37946. |
[6] | ZHANG RUI-ZHI, REECE M J. Review of high entropy ceramics: design, synthesis, structure and properties. Journal of Materials Chemistry A, 2019,7(39):22148-22162. |
[7] |
SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Communications, 2018,9(1):4980.
URL PMID |
[8] | 顾俊峰, 邹冀, 张帆, 等. 高熵陶瓷材料研究进展. 中国材料进展, 2019,38(9):855-886. |
[9] | YE BEI-LIN, WEN TONG-QI, CHU YAN-HUI. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. Journal of the American Ceramic Society, 2019,103(1):500-507. |
[10] | YAN XUE-LIANG, CONSTANTIN L, LU YONG-FENG, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 2018,101(10):4486-4491. |
[11] | ROST C M, BORMAN T, HOSSAIN M D, et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Materialia, 2020,196:231-239. |
[12] | CHEN HENG, XIANG HUI-MIN, DAI FU-ZHI, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 2019,35(8):1700-1705. |
[13] | CSANÁDI T, VOJTKO M, DANKHÁZI Z, et al. Small scale fracture and strength of high-entropy carbide grains during microcantilever bending experiments. Journal of the European Ceramic Society, 2020,40(14):4774-4782. |
[14] | WEI XIAO-FENG, LIU JI-XUAN, LI FEI, et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 2019,39(10):2989-2994. |
[15] | PENG CHONG, GAO XIANG, WANG MING-ZHI, et al. Diffusion- controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Applied Physics Letters, 2019,114(1):011905-1-5. |
[16] | MOSKOVSKIKH D O, VOROTILO S, SEDEGOV A S, et al. High- entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering. Ceramics International, 2020,46(11):19008-19014. |
[17] |
SURE J, SRI MAHA VISHNU D, KIM H K, et al. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angewandte Chemie International Edition, 2020,59(29):11830-11835.
URL PMID |
[18] | WANG KAI, CHEN LEI, XU CHEN-GUANG, et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. Journal of Materials Science & Technology, 2020,39:99-105. |
[19] | CHICARDI E, GARCÍA-GARRIDO C, GOTOR F J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceramics International, 2019,45(17):21858-21863. |
[20] |
CHICARDI E, GARCÍA-GARRIDO C, HERNÁNDEZ-SAZ J, et al. Synthesis of all equiatomic five-transition metals high entropy carbides of the IVB (Ti, Zr, Hf) and VB (V, Nb, Ta) groups by a low temperature route. Ceramics International, 2020,46(13):21421-21430.
DOI URL |
[21] | GILD J, KAUFMANN K, VECCHIO K, et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scripta Materialia, 2019,170:106-110. |
[22] |
CASTLE E, CSANADI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Scientific Reports, 2018,8(1):8609.
URL PMID |
[23] | FENG LUN, FAHRENHOLTZ W G, HILMAS G E, et al. Synthesis of single-phase high-entropy carbide powders. Scripta Materialia, 2019,162:90-93. |
[24] | YE BEI-LIN, NING SHAN-SHAN, LIU DA, et al. One-step synthesis of coral-like high-entropy metal carbide powders. Journal of the American Ceramic Society, 2019,102(10):6372-6378. |
[25] | ZHOU JIE-YANG, ZHANG JIN-YONG, ZHANG FAN, et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceramics International, 2018,44(17):22014-22018. |
[26] | LU YAN, SUN YA-NAN, ZHANG TU-ZI, et al. Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: synthesis, microstructure and properties. Journal of the European Ceramic Society, 2019,39(2/3):205-211. |
[27] | SUN YA-NAN, YANG CHUN-MING, LU YAN, et al. Transformation of metallic polymer precursor into nanosized HfTaC2 ceramics. Ceramics International, 2020,46(5):6022-6028. |
[28] | LI FEI, LU YING, WANG XIN-GANG, et al. Liquid precursor- derived high-entropy carbide nanopowders. Ceramics International, 2019,45(17):22437-22441. |
[29] | LIU HONG-HUA, DU BIN, CHU YAN-HUI. Synthesis of the ternary metal carbide solid-solution ceramics by polymer-derived- ceramic route. Journal of the American Ceramic Society, 2020,103(5):2970-2974. |
[30] | DU BIN, LIU HONG-HUA, CHU YAN-HUI. Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders. Journal of the American Ceramic Society, 2020,103(8):4063-4068. |
[31] | LU YAN, YE LI, HAN WEI-JIAN, et al. Synthesis, characterization and microstructure of tantalum carbide-based ceramics by liquid polymeric precursor method. Ceramics International, 2015,41(9):12475-12479. |
[32] | LIU DAN, CAI TAO, QIU WEN-FENG, et al. Synthesis, characterization, and microstructure of ZrC/SiC composite ceramics via liquid precursor conversion method. Journal of the American Ceramic Society, 2014,97(4):1242-1247. |
[1] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[2] | OUYANG Qin, WANG Yanfei, XU Jian, LI Yinsheng, PEI Xueliang, MO Gaoming, LI Mian, LI Peng, ZHOU Xiaobing, GE Fangfang, ZHANG Chonghong, HE Liu, YANG Lei, HUANG Zhengren, CHAI Zhifang, ZHAN Wenlong, HUANG Qing. Research Progress of SiC Fiber Reinforced SiC Composites for Nuclear Application [J]. Journal of Inorganic Materials, 2022, 37(8): 821-840. |
[3] | CHEN Junyun, SUN Lei, JIN Tianye, LUO Kun, ZHAO Zhisheng, TIAN Yongjun. Binderless Layered BN Toughened cBN for Ultra-precision Cutting [J]. Journal of Inorganic Materials, 2022, 37(6): 623-628. |
[4] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
[5] | RUAN Jing, YANG Jinshan, YAN Jingyi, YOU Xiao, WANG Mengmeng, HU Jianbao, ZHANG Xiangyu, DING Yusheng, DONG Shaoming. Porous SiC Ceramic Matrix Composite Reinforced by SiC Nanowires with High Strength and Low Thermal Conductivity [J]. Journal of Inorganic Materials, 2022, 37(4): 459-466. |
[6] | XIAO Peng, ZHU Yulin, WANG Song, YU Yiping, LI Hao. Research Progress on the Preparation and Characterization of Ultra Refractory TaxHf1-xC Solid Solution Ceramics [J]. Journal of Inorganic Materials, 2021, 36(7): 685-694. |
[7] | GUO Meng, ZHANG Fengnian, MIAO Yang, LIU Yufeng, YU Jun, GAO Feng. Preparation and Electrical Properties of High Entropy La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Perovskite Ceramics Powder [J]. Journal of Inorganic Materials, 2021, 36(4): 431-435. |
[8] | SUN Luchao, REN Xiaomin, DU Tiefeng, LUO Yixiu, ZHANG Jie, WANG Jingyang. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates [J]. Journal of Inorganic Materials, 2021, 36(4): 339-346. |
[9] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
[10] | ZHANG Xiao, LI Youbing, CHEN Ke, DING Haoming, CHEN Lu, LI Mian, SHI Rongrong, CHAI Zhifang, HUANG Qing. Tailoring MAX Phase Magnetic Property Based on M-site and A-site Double Solid Solution [J]. Journal of Inorganic Materials, 2021, 36(12): 1247-1255. |
[11] | LIU Qian, WANG Jiacheng, ZHOU Zhenzhen, XU Xiaoke. Research Progress on High Throughput Parallel Synthesis of Micro-nano Powders Libraries [J]. Journal of Inorganic Materials, 2021, 36(12): 1237-1246. |
[12] | WANG Jianing, JIN Jun, WEN Zhaoyin. Application of Separators Modified by Carbon Nanospheres Enriched with α-MoC1-x Nanocrystalline in Lithium Sulfur Batteries [J]. Journal of Inorganic Materials, 2020, 35(5): 532-540. |
[13] | ZHOU Xingyuan, LIU Wei, ZHANG Cheng, HUA Fuqiang, ZHANG Min, SU Xianli, TANG Xinfeng. Optimization of Thermoelectric Transport Properties of Nb-doped Mo1-xWxSeTe Solid Solutions [J]. Journal of Inorganic Materials, 2020, 35(12): 1373-1379. |
[14] | CHEN Bowen, WANG Jingxiao, JIANG Youlin, ZHOU Haijun, LIAO Chunjing, ZHANG Xiangyu, KAN Yanmei, NI Dewei, DONG Shaoming. Stable Zirconium Carbide Fibers Fabricated by Centrifugal Spinning Technique [J]. Journal of Inorganic Materials, 2020, 35(12): 1385-1390. |
[15] | LUO Qing,YUAN Qing,JIANG Qian-Qin,YU Nai-Sen. Cu-SSZ-13/SiC-waste Composite: Synthesis and Application for NH3-SCR [J]. Journal of Inorganic Materials, 2019, 34(9): 953-960. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||