| [1] | GEORGEE P, RAABE D, RITCHIER O. High-entropy alloys. Nature Reviews Materials, 2019,4(8):515-534. | 
																													
																							| [2] | MIRACLED B, SENKOVO N. A critical review of high entropy alloys and related concepts. Acta Mater., 2017,122:448-511. | 
																													
																							| [3] | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloying with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004,6(5):299-303. | 
																													
																							| [4] | GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014,345(6201):1153-1158. URL    
																																					PMID
 | 
																													
																							| [5] | LI Z, PRADEEPK G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016,534(7606):306-307. | 
																													
																							| [6] | YOUSSEF K M, ZADDACH A J, NIU C, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 2014,3(2):95-99. | 
																													
																							| [7] | ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014,61:1-93. | 
																													
																							| [8] | SHI Y Z, YANG B LIAW P. Corrosion-resistant high-entropy alloys: a review. Metals-Basel, 2017,7(92):43-1-18. | 
																													
																							| [9] | SENKOV O N, WILKS G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010,18(9):1758-1765. | 
																													
																							| [10] | HSU C Y, JUAN C C, WANG W R, et al. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high- entropy alloys. Materials Science and Engineering: A, 2011,528(10/11):3581-3588. | 
																													
																							| [11] | OIKAWA K, ITO W, IMANO Y, et al. Effect of magnetic field on martensitic transition of Ni46Mn41In13 heusler alloy. Appl. Phys. Lett., 2006,88(12):122507-1-3. | 
																													
																							| [12] | ZHANG Y, ZUO T, CHENG Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep., 2013,3:1455-1-7. URL    
																																					PMID
 | 
																													
																							| [13] | BÉRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 2016,10(4):328-333. | 
																													
																							| [14] | SHAFEIE S, GUO S, HU Q, et al. High-entropy alloys as high- temperature thermoelectric materials. J. Appl. Phys., 2015,118(18):184905-1-10. | 
																													
																							| [15] | WEI P C, LIAO C N, WU H J, et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Adv. Mater., 2020,32(12):1906457-1-10. | 
																													
																							| [16] | TSAI M H. Three strategies for the design of advanced high- entropy alloys. Entropy, 2016,18(7):252-1-14. | 
																													
																							| [17] | TSAI M H, YEH J W. High-entropy alloys: a critical review. Materials Research Letters, 2014,2(3):107-123. | 
																													
																							| [18] | BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008,321(12):1457-1461. | 
																													
																							| [19] | SNYDER G J. Complex strucure thermoelectric meterial. Nat. Mater., 2008,7(2):105-114. DOI    
																																					URL    
																																					PMID
 | 
																													
																							| [20] | SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials. Angewandte Chemie International Edition, 2009,48(46):8616-8639. URL    
																																					PMID
 | 
																													
																							| [21] | ZHANG H, LEE G, FONSECA A F, et al. Isotope effect on the thermal conductivity of graphene. Journal of Nanomaterials, 2010,2010:537657-1-5. | 
																													
																							| [22] | LIU R, XI L, LIU H, et al. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem. Commun., 2012,48(32):3818-3820. | 
																													
																							| [23] | PLIRDPRING T, KUROSAKI K, KOSUGA A, et al. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Adv. Mater., 2012,24(27):3622-3626. URL    
																																					PMID
 | 
																													
																							| [24] | XI L, ZHANGY B, SHIX Y, et al. Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X=Se, S) from first principles. Phys. Rev. B, 2012,86(15):155201-155215. | 
																													
																							| [25] | SKOUGE J, CAINJ D, MORELLID T. High thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4solid solution. Appl. Phys. Lett., 2011, 98(26):261911-1-3. DOI    
																																					URL
 | 
																													
																							| [26] | LIU R, CHEN H, ZHAO K, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv. Mater., 2017, 29(38):1702712-7-7. | 
																													
																							| [27] | HU L, ZHANG Y, WU H, et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Adv. Energy Mater., 2018, 8(29):1802116-1-14. | 
																													
																							| [28] | LIN S X, TAN X J, SHAO H Z, et al. Ultralow lattice thermal conductivity in SnTe by manipulating the electron-phonon coupling. The Journal of Physical Chemistry C, 2019,123(26):15996-16002. DOI    
																																					URL
 | 
																													
																							| [29] | TAN G, HAO S, HANUS R, et al. High thermoelectric performance in SnTe-AgSbTe2 alloys from lattice softening, giant phonon-vacancy scattering, and valence band convergence. ACS. Energy Lett., 2018,3(3):705-712. | 
																													
																							| [30] | HARRISON W. Elementary Electronic Structure. London: World Scientific Publishing Company, 2004. |