| [1] LI K, WANG X, ZHANG F, et al. Electronegativity identification of novel superhard materials. Phys. Rev. Lett., 2008, 100(23): 235504–1–4.[2] GAO F M. Theoretical model of intrinsic hardness. Phys. Rev. B, 2006, 73(13): 132104–1–4.
 [3] HE J, WU E, WANG H, et al. Ionicities of Boron-Boron bonds in B(12) Icosahedra. Phys. Rev. Lett., 2005, 94(1): 015504– 1–4.
 [4] GAO F, HE J, WU E, et al. Hardness of covalent crystal. Phys. Rev. Lett., 2003, 91(1): 015502–1–4.
 [5] WENTORF R H JR. Cubic form of boron nitride. Chem. Phys., 1957, 26(4): 956–957.
 [6] ZHAO Y, HE D W, DAEMEN L L, et al. Superhard B-C-N materials synthesized in nanostructured bulks. Mater. Res., 2002, 17(12): 3139–3145.
 [7] SUN J, ZHOU X F, QIAN G R, et al. Chalcopyrite polymorph for superhard BC2N. Appl. Phys. Lett., 2006, 89: 151911–1–3.
 [8] LUO X G, GUO X J, LIU Z Y, et al. First-principles study of wurtzite BC2N. Phys. Rev. B, 2007, 76: 092107–1–4.
 [9] LI Q, WANG M, OGANOV A R, et al. Rhombohedral superhard structure of BC2N. J. Appl. Phys., 2009, 105: 053514–1–4.
 [10] LUO X G, GUO X J, XU B,et al. Body-centered superhard BC2N phases from first principles. Phys. Rev. B, 2007, 76: 094103–1–6.
 [11] ZHOU X F, SUN J, QIAN Q R, et al. A tetragonal phase of superhard BC2N. J. Appl. Phys., 2009, 105(9): 093521–1–4.
 [12] ZHOU X F, SUN J, FAN Y X, et al. Most likely phase of superhard BC2N by ab initio calculations. Phys. Rev. B, 2007, 76: 100101–1–4.
 [13] LI Y L, FAN W L, SUN H G, et al. First-Principles study of the Electronic structure,Optical properties, and lattice dynamics of BC2N. Phys. Chem. C, 2010, 114(6): 2783–2791.
 [14] HOHENBERG P, KOHN W. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B): B864–B871.
 [15] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 1980, 45: 566–569.
 [16] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41(11): 7892–7895.
 [17] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13: 5188–5192.
 [18] BROYDEN C G. The convergence of a class of double-rank minimization algorithms 1. General considerations. J. Inst. Math Appl., 1970, 6(1): 76–90.
 [19] FLETCHER R. A new approach to variable metric algorithms. Comput. J., 1970, 13: 317–322.
 [20] GOLDFARB D. A family of variable-metric methods derived by variational means. Math. Comput., 1970, 24: 23–26.
 [21] SHANNO D F. Conditioning of quasi-Newton methods for function minimization. Math. Comput., 1970, 24: 647–656.
 [22] WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B, 2007, 76(5): 054115–1–15.
 [23] VOIGT W. Lehrbuch der Kristallphysik. Leipzig: Teubner B G, 1928: 960.
 [24] REUSS A, ANGEW Z. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Math. Mech., 1929, 9: 49–58.
 [25] HILL R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A, 1952, 65(5): 349–354.
 [26] RANGANATHAN S I, STARZEWSKI M O. Universal elastic anisotropy index. Phys. Rev. Lett., 2008, 101(5): 055504– 1–4.
 [27] CHUNG D H, BUESSEM W R. The elastic anisotropy of crystal. J. Appl. Phys., 1967, 38: 2010–2012.
 [28] CLARKE D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol., 2003, 163: 67–74.
 [29] CAHILL D G, WATSON S K, POHL R O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B, 1992, 46(10): 6131–6140.
 [30] KITTEL C, MCEUEN P. Introduction to Solid State Physics. New York: Wiley, 1996: 88–90.
 [31] WONG J, KRISCH M, FARBER D L, et al. Crystal dynamics of δ fcc Pu-Ga alloy by high-resolution inelastic X-ray scattering. Phys. Rev. B, 2005,72(6): 064115–1–12.
 [32] RAVINDRAN P, FAST L, KORZHAVYI P A, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys., 1998, 84(9): 4891–4904.
 [33] NYE J F. Physical Properties of Crystals. Oxford: Clarendon Press, 1964: 145.
 [34] ANDRIEVSKI R A. Superhard materials based on nanostructured high-melting point compounds: achievements and perspectives. Int. J. Refract. Met. Hard. Mater., 2001, 19(4): 447–452.
 [35] 陈洪荪. 金属的弹性各向异性. 北京: 冶金工业出版社, 1996: 211–212.
 [36] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al. Synthesis of superhard cubic BC2N. Appl. Phys. Lett., 2001, 78: 1385– 1387.
 [37] LI Q, WANG M, OGANOV A R, et al. Rhombohedral superhard structure of BC2N. J. Appl. Phys., 2009, 105: 053514–1–4.
 [38] AO J, LI C M, WANG J, et al. Investigations of elastic and anisotropic of new Superhard material R3m-BC2N. J. Sci. Sin.: Phys., Mech&Astron, 2013, 43(9): 1065–1073.
 [39] TOHEI T, KUWABARA A, OBA F, et al. Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B, 2006, 73(6): 064304–1–7.
 [40] GSCHEIDNER JR K A. Physical properties and interrelationships of metallic and semimetallic elements. Solid State Phys., 1964, 16: 275–426.
 |