Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 645-651.DOI: 10.15541/jim20200507
Special Issue: 【虚拟专辑】计算材料
• RESEARCH ARTICLE • Previous Articles Next Articles
DONG Kangjia1(), JIANG Chen1(), REN Shaobin2, LANG Xiaohu2, GAO Rui1, YE Hui1
Received:
2020-08-28
Revised:
2020-10-15
Published:
2021-06-20
Online:
2020-12-10
Contact:
JIANG Chen, professor. E-mail: jc_bati@163.com
About author:
DONG Kangjia(1997-), male, Master candidate. E-mail: 1967188330@qq.com
Supported by:
CLC Number:
DONG Kangjia, JIANG Chen, REN Shaobin, LANG Xiaohu, GAO Rui, YE Hui. Anisotropic Calculation of Mechanical Property of GaAs Crystal[J]. Journal of Inorganic Materials, 2021, 36(6): 645-651.
Mechanical parameters of GaAs | S11/ (×10-12, Pa-1) | S12/ (×10-12, Pa-1) | S44/ (×10-12, Pa-1) |
---|---|---|---|
Value | 11.7 | 3.7 | 16.8 |
Table 1 GaAs material parameters[10]
Mechanical parameters of GaAs | S11/ (×10-12, Pa-1) | S12/ (×10-12, Pa-1) | S44/ (×10-12, Pa-1) |
---|---|---|---|
Value | 11.7 | 3.7 | 16.8 |
Data source | Hardness/GPa | KIC/(MPa·m1/2) | Comments |
---|---|---|---|
Chen, et al[ | 5.27-5.45 | 0.482-0.579 | <110> and <100> crystal direction measured by different loads |
Xu, et al[ | 6-10 | - | Measured by different loads |
Ponraj, et al[ | 8.2-10.4 | - | Measured by different loads |
Hjort, et al[ | 7 | 0.44 | Average value |
This work | 5.69-6.21 | 0.30-0.60 | Measured by single loads and different crystal orientations |
Table 2 Vickers hardness and fracture toughness[7,8,9,10]
Data source | Hardness/GPa | KIC/(MPa·m1/2) | Comments |
---|---|---|---|
Chen, et al[ | 5.27-5.45 | 0.482-0.579 | <110> and <100> crystal direction measured by different loads |
Xu, et al[ | 6-10 | - | Measured by different loads |
Ponraj, et al[ | 8.2-10.4 | - | Measured by different loads |
Hjort, et al[ | 7 | 0.44 | Average value |
This work | 5.69-6.21 | 0.30-0.60 | Measured by single loads and different crystal orientations |
[1] |
WASMER K, BALLIF C, CÉDRIC P, et al. Dicing of gallium arsenide high performance laser diodes for industrial applications: part I: scratching operation. Journal of Materials Processing Technology, 2008,198(1/2/3):114-121.
DOI URL |
[2] |
WASMER K, BALLIF C, POUVREAU C, et al. Dicing of gallium- arsenide high performance laser diodes for industrial applications: Part II. cleavage operation. Journal of Materials Processing Technology, 2008,198(1/2/3):105-113.
DOI URL |
[3] |
WASMER K, BALLIF C, GASSILLOUD R, et al. Cleavage fracture of brittle semiconductors from the nanometre to the centimetre scale. Advanced Engineering Materials, 2005,7(5):309-317.
DOI URL |
[4] |
JIANG C, HUANG J L, JIANG Z Y, et al. Estimation of energy savings when adopting ultrasonic vibration-assisted magnetic compound fluid polishing. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021,8:1-11.
DOI URL |
[5] |
JIANG C, WU T, YE H, et al. Estimation of energy and time savings in optical glass manufacturing when using ultrasonic vibration- assisted grinding. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019,6(1):1-9.
DOI URL |
[6] |
GAO R, JIANG C, LANG X H, et al. Experimental investigation of influence of scratch features on GaAs cleavage plane during cleavage processing using a scratching capability index. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, DOI: 10.1007/s40684-020-00241-3.
DOI |
[7] |
CHEN J Y, DING F, LUO X C, et al. Fundamental study of ductile- regime diamond turning of single crystal gallium arsenide. Precision Engineering, 2019,62:71-82.
DOI URL |
[8] | XU L X, KONG L Q, ZHAO H W, et al. Mechanical behavior of undoped n-Type GaAs under the indentation of berkovich and Flat- Tip indenters. Materials, 2019, 12(7): 1192-1-10. |
[9] | PONRAJ J S, BUFFAGNI E, DEIVASIGAMANI G, , et al. Studies of nanoindentation and residual stress analysis of Ge/GaAs epilayers. Semiconductor Science and Technology, 2015, 30(5): 055004- 1-7. |
[10] | HJORT K, SODERKVIST J, SCHWEITZ J A. Gallium arsenide as a mechanical material. Journal of Micromechanics & Microengineering, 1994,4(1):1-13. |
[11] |
HOPCROFT M A, NIX W D, KENNY T W. What is the Young's modulus of silicon? Journal of Microelectromechanical Systems, 2010,19(2):229-238.
DOI URL |
[12] |
TING T C T. On anisotropic elastic materials for which Young’s modulus E(n) is independent of n or the shear modulus G(n, m) is independent of n and m. Journal of Elasticity, 2005,81(3):271-292.
DOI URL |
[13] |
KNOWLES K M, HOWIE P R. The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials. Journal of Elasticity, 2015,120(1):87-108.
DOI URL |
[14] |
BRANTLEY W. A. Calculated elastic constants for stress problems associated with semiconductor devices. Journal of Applied Physics, 1973,44(1):534.
DOI URL |
[15] |
LUAN X H, QIN H B, LIU F M, et al. The mechanical properties and elastic anisotropies of cubic Ni3Al from first principles calculations. Crystals, 2018,8(8):307-309.
DOI URL |
[16] |
RYSAEVA L K, BAIMOVA Y A, DMITRIEV S V, et al. Elastic properties of diamond-like phases based on carbon nanotubes. Diamond and Related Materials, 2019,97:107411.
DOI URL |
[17] | LIU J L, YE L H, ZHOU Y W, et al. Anisotropy of elasticity of a Ni base single crystal superalloy. Acta Metallurgica Sinica, 2020,56(06):855-862. |
[18] |
BERGNER F, SCHAPER M, HAMMER R, et al. Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime. International Journal of Materials Research (formerly Zeitschrift fuer Metallkunde), 2007,98(8):735-741.
DOI URL |
[19] | CHENG J, NIU Y B, WANG J H, et al. Analysis of anisotropic mechanical properties of monocrystalline silicon callow. Journal of Harbin Institute of Technology, 2019,51(7):16-23. |
[1] | AN Wenran, HUANG Jingqi, LU Xiangrong, JIANG Jianing, DENG Longhui, CAO Xueqiang. Effect of Heat-treatment Temperature on Thermal and Mechanical Properties of LaMgAl11O19 Coating [J]. Journal of Inorganic Materials, 2022, 37(9): 925-932. |
[2] | LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969-975. |
[3] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[4] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
[5] | XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal [J]. Journal of Inorganic Materials, 2022, 37(6): 683-690. |
[6] | DING Jianxiang, ZHANG Kaige, LIU Dongming, ZHENG Wei, ZHANG Peigen, SUN Zhengming. Ag-based Electrical Contact Material Reinforced by Ti3AlC2 Ceramic and Its Derivative Ti3C2Tx [J]. Journal of Inorganic Materials, 2022, 37(5): 567-573. |
[7] | WEI Tingting, GAO Xiguang, SONG Yingdong. Response of 2D SiC/SiC Composites Resistivity to Service Environments [J]. Journal of Inorganic Materials, 2022, 37(4): 420-426. |
[8] | SUN Yangshan, YANG Zhihua, CAI Delong, ZHANG Zhengyi, LIU Qi, FANG Shuqing, FENG Liang, SHI Lifen, WANG Youle, JIA Dechang. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering [J]. Journal of Inorganic Materials, 2022, 37(12): 1351-1357. |
[9] | SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting [J]. Journal of Inorganic Materials, 2021, 36(6): 652-658. |
[10] | LÜ Shasha, ZU Yufei, CHEN Guoqing, ZHAO Bojun, FU Xuesong, ZHOU Wenlong. Preparation and Mechanical Property of the Ceramic-reinforced Cr0.5MoNbWTi Refractory High-entropy Alloy Matrix Composites [J]. Journal of Inorganic Materials, 2021, 36(4): 386-392. |
[11] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
[12] | JIN Min, BAI Xudong, ZHAO Su, ZHANG Rulin, CHEN Yuqi, ZHOU Lina. Mechanical Property of SnSe Single Crystal Prepared via Vertical Bridgman Method [J]. Journal of Inorganic Materials, 2021, 36(3): 313-318. |
[13] | FENG Mingxing, WANG Bin, XU Pengyu, TU Bingtian, WANG Hao. Predicting Thermomechanical Properties of MgAl2O4 Transparent Ceramic Based on Bond Valence Models [J]. Journal of Inorganic Materials, 2021, 36(10): 1067-1073. |
[14] | MA Denghao, HOU Zhenhua, LI Junping, SUN Xin, JIN Enze, YIN Jian. Interface Type on the Static Mechanical Properties and Internal Friction of 3D-SiC/SiC Composites [J]. Journal of Inorganic Materials, 2021, 36(1): 55-60. |
[15] | ZHANG Ze,WANG Xiaodong,SHEN Jun. Effect of Organic-inorganic Crosslinking Degree on the Mechanical and Thermal Properties of Aerogels [J]. Journal of Inorganic Materials, 2020, 35(4): 454-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||