Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 645-651.DOI: 10.15541/jim20200507
• RESEARCH ARTICLE • Previous Articles Next Articles
DONG Kangjia1(), JIANG Chen1(
), REN Shaobin2, LANG Xiaohu2, GAO Rui1, YE Hui1
Received:
2020-08-28
Revised:
2020-10-15
Published:
2021-06-20
Online:
2020-12-10
Contact:
JIANG Chen, professor. E-mail: jc_bati@163.com
About author:
DONG Kangjia(1997-), male, Master candidate. E-mail: 1967188330@qq.com
Supported by:
CLC Number:
DONG Kangjia, JIANG Chen, REN Shaobin, LANG Xiaohu, GAO Rui, YE Hui. Anisotropic Calculation of Mechanical Property of GaAs Crystal[J]. Journal of Inorganic Materials, 2021, 36(6): 645-651.
Mechanical parameters of GaAs | S11/ (×10-12, Pa-1) | S12/ (×10-12, Pa-1) | S44/ (×10-12, Pa-1) |
---|---|---|---|
Value | 11.7 | 3.7 | 16.8 |
Table 1 GaAs material parameters[10]
Mechanical parameters of GaAs | S11/ (×10-12, Pa-1) | S12/ (×10-12, Pa-1) | S44/ (×10-12, Pa-1) |
---|---|---|---|
Value | 11.7 | 3.7 | 16.8 |
Data source | Hardness/GPa | KIC/(MPa·m1/2) | Comments |
---|---|---|---|
Chen, et al[ | 5.27-5.45 | 0.482-0.579 | <110> and <100> crystal direction measured by different loads |
Xu, et al[ | 6-10 | - | Measured by different loads |
Ponraj, et al[ | 8.2-10.4 | - | Measured by different loads |
Hjort, et al[ | 7 | 0.44 | Average value |
This work | 5.69-6.21 | 0.30-0.60 | Measured by single loads and different crystal orientations |
Table 2 Vickers hardness and fracture toughness[7,8,9,10]
Data source | Hardness/GPa | KIC/(MPa·m1/2) | Comments |
---|---|---|---|
Chen, et al[ | 5.27-5.45 | 0.482-0.579 | <110> and <100> crystal direction measured by different loads |
Xu, et al[ | 6-10 | - | Measured by different loads |
Ponraj, et al[ | 8.2-10.4 | - | Measured by different loads |
Hjort, et al[ | 7 | 0.44 | Average value |
This work | 5.69-6.21 | 0.30-0.60 | Measured by single loads and different crystal orientations |
[1] |
WASMER K, BALLIF C, CÉDRIC P, et al. Dicing of gallium arsenide high performance laser diodes for industrial applications: part I: scratching operation. Journal of Materials Processing Technology, 2008,198(1/2/3):114-121.
DOI URL |
[2] |
WASMER K, BALLIF C, POUVREAU C, et al. Dicing of gallium- arsenide high performance laser diodes for industrial applications: Part II. cleavage operation. Journal of Materials Processing Technology, 2008,198(1/2/3):105-113.
DOI URL |
[3] |
WASMER K, BALLIF C, GASSILLOUD R, et al. Cleavage fracture of brittle semiconductors from the nanometre to the centimetre scale. Advanced Engineering Materials, 2005,7(5):309-317.
DOI URL |
[4] |
JIANG C, HUANG J L, JIANG Z Y, et al. Estimation of energy savings when adopting ultrasonic vibration-assisted magnetic compound fluid polishing. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021,8:1-11.
DOI URL |
[5] |
JIANG C, WU T, YE H, et al. Estimation of energy and time savings in optical glass manufacturing when using ultrasonic vibration- assisted grinding. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019,6(1):1-9.
DOI URL |
[6] |
GAO R, JIANG C, LANG X H, et al. Experimental investigation of influence of scratch features on GaAs cleavage plane during cleavage processing using a scratching capability index. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, DOI: 10.1007/s40684-020-00241-3.
DOI |
[7] |
CHEN J Y, DING F, LUO X C, et al. Fundamental study of ductile- regime diamond turning of single crystal gallium arsenide. Precision Engineering, 2019,62:71-82.
DOI URL |
[8] | XU L X, KONG L Q, ZHAO H W, et al. Mechanical behavior of undoped n-Type GaAs under the indentation of berkovich and Flat- Tip indenters. Materials, 2019, 12(7): 1192-1-10. |
[9] | PONRAJ J S, BUFFAGNI E, DEIVASIGAMANI G, , et al. Studies of nanoindentation and residual stress analysis of Ge/GaAs epilayers. Semiconductor Science and Technology, 2015, 30(5): 055004- 1-7. |
[10] | HJORT K, SODERKVIST J, SCHWEITZ J A. Gallium arsenide as a mechanical material. Journal of Micromechanics & Microengineering, 1994,4(1):1-13. |
[11] |
HOPCROFT M A, NIX W D, KENNY T W. What is the Young's modulus of silicon? Journal of Microelectromechanical Systems, 2010,19(2):229-238.
DOI URL |
[12] |
TING T C T. On anisotropic elastic materials for which Young’s modulus E(n) is independent of n or the shear modulus G(n, m) is independent of n and m. Journal of Elasticity, 2005,81(3):271-292.
DOI URL |
[13] |
KNOWLES K M, HOWIE P R. The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials. Journal of Elasticity, 2015,120(1):87-108.
DOI URL |
[14] |
BRANTLEY W. A. Calculated elastic constants for stress problems associated with semiconductor devices. Journal of Applied Physics, 1973,44(1):534.
DOI URL |
[15] |
LUAN X H, QIN H B, LIU F M, et al. The mechanical properties and elastic anisotropies of cubic Ni3Al from first principles calculations. Crystals, 2018,8(8):307-309.
DOI URL |
[16] |
RYSAEVA L K, BAIMOVA Y A, DMITRIEV S V, et al. Elastic properties of diamond-like phases based on carbon nanotubes. Diamond and Related Materials, 2019,97:107411.
DOI URL |
[17] | LIU J L, YE L H, ZHOU Y W, et al. Anisotropy of elasticity of a Ni base single crystal superalloy. Acta Metallurgica Sinica, 2020,56(06):855-862. |
[18] |
BERGNER F, SCHAPER M, HAMMER R, et al. Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime. International Journal of Materials Research (formerly Zeitschrift fuer Metallkunde), 2007,98(8):735-741.
DOI URL |
[19] | CHENG J, NIU Y B, WANG J H, et al. Analysis of anisotropic mechanical properties of monocrystalline silicon callow. Journal of Harbin Institute of Technology, 2019,51(7):16-23. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[11] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[12] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[13] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[14] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[15] | FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging [J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||