Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (3): 235-246.DOI: 10.3724/SP.J.1077.2013.12345
• Review • Next Articles
KUANG Da, HU Wen-Bin
Received:
2012-05-24
Revised:
2012-07-23
Published:
2013-03-20
Online:
2013-02-20
About author:
KUANG Da. E-mail: dlkda@sina.com
CLC Number:
KUANG Da, HU Wen-Bin. Research Progress of Graphene Composites[J]. Journal of Inorganic Materials, 2013, 28(3): 235-246.
Add to citation manager EndNote|Ris|BibTeX
[1] Novoselov K, Geim A, Morozov S, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669.[2] Weitz R T, Yacoby A. Nanomaterials: graphene rests easy. Nat. Nanotechnol., 2010, 5(10): 699–700.[3] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388.[4] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530–1534.[5] Ziegler K. Minimal conductivity of graphene: nonuniversal values from the Kubo formula. Phys. Rev. B, 2007, 75(23): 233407.[6] Nair R, Blake P, Grigorenko A, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308.[7] Williams J, DiCarlo L, Marcus C. Quantum Hall effect in a gate-controlled pn junction of graphene. Science, 2007, 317(5838): 638–641.[8] Geim A K, Novoselov K S. The rise of graphene. Nat. Mater., 2007, 6(3): 183–191.[9] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710.[10] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene. Chem. Rev., 2010, 110(1): 132–145.[11] Kim J, Kim F, Huang J. Seeing graphene-based sheets. Mater. Today, 2010, 13(3): 28–38.[12] Rao C, Sood A, Voggu R, et al. Some novel attributes of graphene. J. Phys. Chem. Lett., 2010, 1(2): 572–580.[13] Lv R, Terrones M. Towards new graphene materials: doped graphene sheets and nanoribbons. Mater. Lett., 2012, 78: 209–218.[14] Kuila T, Bose S, Mishra A K, et al. Chemical functionalization of graphene and its applications. Prog. Mater. Sci., 2012, 57(7): 1061–1105.[15] Britnell L, Gorbachev R, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071): 947–950.[16] Sire C, Ardiaca F, Lepilliet s, et al. Flexible GHz transistors derived from solution-based single-layer graphene. Nano Lett., 2012, 12(3): 1184–1188.[17] Wu Y, Perebeninos V, Lin Y, et al. Quantum behavior of graphene transistors near the scaling limit. Nano Lett., 2012, 12(3): 1417–1423[18] CHEN Cao, ZHUO Wen-Tao, ZHENG Wen-Ge, et al. Preparation and characterization of water-soluble graphene and highly conducting films. Journalof Inorganic Materials, 2011, 26(7): 707–710.[19] Yuan Xiaoya. Progress in preparation of graphene. Journal of Inorganic Materials, 2011, 26(6): 561–570.[20] WANG Lin, TIAN Lin-Hai, WEI Guo-Dong, et al. Epitaxial growth of graphene and their applications in devices. Journal of Inorganic Materials, 2011, 26(10): 1009–1019.[21] Strupinski W, Grodecki K, Wysmolek A, et al. Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett., 2011, 11(4): 1786–1791.[22] Losurdo M, Giangregorio M M, Capezzuto P, et al. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys., 2011, 13(46): 20836–20843.[23] Qi J, Zheng W, Zheng X, et al. Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl. Surf. Sci., 2011, 257(15): 6531–6534.[24] Emtsev KV, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater., 2009, 8(3): 203–207.[25] Li Q, Wang L, Zhu Y, et al. Solvothermal synthesis of graphene sheets at 300℃. Mater. Lett., 2011, 65(15): 2410–2412.[26] Wang X, Zhi L, Tsao N, et al. Transparent carbon films as electrodes in organic solar cells. Angew. Chem. Int. Ed., 2008, 120(16): 3032–3034.[27] Zhang L, Li X, Huang Y, et al. Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon, 2010, 48(8): 2367–2371.[28] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565.[29] Liu C, Hu G, Gao H. Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N-dimethylformamide. J. Supercrit. Fluid., 2012, 63: 99–104.[30] Chen L, Tang Y, Wang K, et al. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun., 2011, 13(2): 133–137.[31] An S J, Zhu Y, Lee S H, et al. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J. Phys. Chem. Lett., 2010, 1(8): 1259–1263.[32] Chen W, Yan L, Bangal P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 2010, 48(4): 1146–1152.[33] Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323): 549–552.[34] Hannon J B, Tromp R M. Pit formation during graphene synthesis on SiC(0001): In situ electron microscopy. Phys. Rev. B, 2008, 77(24): 241404–1–4.[35] LI Li-Min, TANG Jun, KANG Chao-Yang, et al. Epitaxial growth of multi-layer graphene on the substrate of Si(111). Journal of Inorganic Materials, 2011, 26(5): 472–476.[36] Wang H, Robinson JT, Li X, et al. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc., 2009, 131(29): 9910–9911.[37] Yan X, Cui X, Li L. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc., 2010, 132(17): 5944–5945.[38] Qian H, Negri F, Wang C, et al. Fully Conjugated tri(perylene bisimides): an approach to the construction of n-type graphene nanoribbons. J. Am. Chem. Soc., 2008, 130(52): 17970–17976.[39] Ramesha G K, Sampath S. Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C, 2009, 113(19): 7985–7989.[40] Wang Z, Zhou X, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C, 2009, 113(32): 14071–14075.[41] Guo H, Wang X, Qian Q, et al. A green approach to the synthesis of graphene nanosheets. ACS Nano, 2009, 3(9): 2653–2659.[42] LV Yan, WANG Zhi-Yong, ZHANG Hao, et al. Pore structures and electrochemical properties of graphene prepared by arc discharge method. Journal of Inorganic Materials, 2010, 25(7): 725–728.[43] LI Xu, ZHAO Wei-Feng, CHEN Guo-Hua. Research progress in preparation and characterization of graphenes. Materials Review, 2008, 22(8): 48–52.[44] Bolotin K, Sikes K, Hone J, et al. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett., 2008, 101(9): 96802–1–3.[45] Novoselov K, Geim A, Morozov S, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200.[46] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438(7065): 201–204.[47] Katsnelson M I. Graphene: carbon in two dimensions. Materials Today, 2007, 10(1): 20–27.[48] Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat. Nano, 2008, 3(8): 491–495.[49] Schedin F, Novoselov K, Morozov S, et al. Detection of individual gas molecules by graphene sensors. Appl. Phys. Lett., 2007, 2(1): 1–6.[50] Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379.[51] Gómez-Navarro C, Weitz R T, Bittner A M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett., 2007, 7(11): 3499–3503.[52] Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett., 2006, 96(25): 256802–1–4.[53] Dawlaty J M, Shivaraman S, Chandrashekhar M, et al. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett., 2008, 92(4): 042116–1–3.[54] Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science, 2008, 320(5873): 206–209.[55] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902–907.[56] Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene. Science, 2010, 328(5975): 213–216.[57] Hod O, Scuseria G E. Electromechanical properties of suspended graphene nanoribbons. Nano Lett., 2009, 9(7): 2619–2622.[58] Gao Y, Hao P. Mechanical properties of monolayer graphene under tensile and compressive loading. Physica E, 2009, 41(8): 1561–1566.[59] Frank O, Tsoukleri G, Parthenios J, et al. Compression behavior of single-layer graphenes. ACS Nano, 2010, 4(6): 3131–3138.[60] Schniepp H C, Kudin K N, Li J L, et al. Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano, 2008, 2(12): 2577–2584.[61] Li D, Kaner R B. Graphene-based materials. Science, 2008, 320(5880): 1170–1171.[62] Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem. Soc. Rev., 2012, 41(2): 666–686.[63] Verdejo R, Bernal M M, Romasanta L J, et al. Graphene filled polymer nanocomposites. J. Mater. Chem., 2011, 21(10): 3301–3310.[64] Wu Q, Xu Y, Yao Z, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano, 2010, 4(4): 1963–1970.[65] Yang J, Wu M, Chen F, et al. Preparation; characterization; and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites. J. Supercrit. Fluid., 2011, 56(2): 201–207.[66] Kim I, Jeong Y G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J. Polym. Sci. Pt. B: Polym. Phys., 2010, 48(8): 850–858.[67] Zhang H, Zheng W, Yan Q, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 2010, 51(5): 1191–1196.[68] Xiao X, Xie T, Cheng Y T. Self-healable graphene polymer composites. J. Mater. Chem., 2010, 20(17): 3508–3514.[69] Zhou X, Wu T, Hu B, et al. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem. Commun., 2010, 46(21): 3663–3665.[70] Zhang K, Zhang L L, Zhao X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater., 2010, 22(4): 1392–1401.[71] Wang H, Hao Q, Yang X, et al. Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Mater. Int., 2010, 2(3): 821–828.[72] Hu H, Wang X, Wang J, et al. Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett., 2010, 484(4/5/6): 247–253.[73] Muradyan V, Sokolov E, Piven N, et al. Anomalous behavior of dielectric permittivity of graphene-filled polymer composite. Tech. Phys. Lett., 2010, 36(12): 1115–1117.[74] Khan U, May P, O’Neill A, et al. Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon, 2010, 48(14): 4035–4041.[75] Zhao X, Zhang Q, Chen D, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules, 2010, 43(5): 2357–2363.[76] Vadukumpully S, Paul J, Mahanta N, et al. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon, 2011, 49(1): 198–205.[77] Huang Y, Qin Y, Wang N, et al. Reduction of graphite oxide with a grignard reagent for facile in situ preparation of Electrically conductive polyolefin/graphene nanocomposites. Macromol. Chem. Phys., 2012, 213(7): 720–728.[78] Fabbri P, Bassoli E, Bon S B, et al. Preparation and characterization of poly (butylene terephthalate)/graphene composites by in-situ polymerization of cyclic butylene terephthalate. Polymer, 2012, 53(4): 897–902.[79] Longun J, Iroh J O. Nano-graphene/polyimide composites with extremely high rubbery plateau modulus. Carbon, 2012, 50(5): 1823–1832.[80] Kandanur S S, Rafiee M A, Yavari F, et al. Suppression of wear in graphene polymer composites. Carbon, 2012, 50(9): 3178–3183.[81] Kulkarni D D, Choi I, Singamaneni S S, et al. Graphene oxide?polyelectrolyte nanomembranes. ACS Nano, 2010, 4(8): 4667–4676.[82] Zhao X, Zhang Q, Hao Y, et al. Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules, 2010, 43(22): 9411–9416.[83] Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 2010, 4(6): 3169–3174.[84] Cai D, Jin J, Yusoh K, et al. High performance polyurethane/ functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos. Sci. Technol., 2012, 72(6): 702–707.[85] Wang X, Xing W, Zhang P, et al. Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos. Sci. Technol., 2012, 72(6): 737–743.[86] Kuila T, Khanra P, Mishra A K, et al. Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Polym. Test., 2012, 31(2): 282–289.[87] Nanjundan A K, Choi H J, Bund A, et al. Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite system. J. Mater. Chem., 2012, 22(24): 12268–12274.[88] Chen D, Zhu H, Liu T. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl. Mater. Inter., 2010, 2(12): 3702–3708.[89] Yang Y K, He C E, Peng R G, et al. Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J. Mater. Chem., 2012, 22(12): 5666–5675.[90] Xu C, Wang X, Zhu J. Graphene? metal particle nanocomposites. J. Phys. Chem. C, 2008, 112(50): 19841–19845.[91] BAI Song, SHEN Xiao-Ping. Graphene-based inorganic nanocomposites. Progress in Chemistry, 2010, 22(11): 2106–2118.[92] Nethravathi C, Rajamathi J T, Ravishankar N, et al. Graphite oxide-intercalated anionic clay and its decomposition to graphene?inorganic material nanocomposites. Langmuir, 2008, 24(15): 8240–8244.[93] Park W I, Lee C H, Lee J M, et al. Inorganic nanostructures grown on graphene layers. Nanoscale, 2011, 3(9): 3522–3533.[94] Vinodgopal K, Neppolian B, Lightcap I V, et al. Sonolytic design of graphene?Au nanocomposites. simultaneous and sequential reduction of graphene oxide and Au(III). J. Phys. Chem. Lett., 2010, 1(13): 1987–1993.[95] Kim Y K, Na H K, Min D H. Influence of surface functionalization on the growth of gold nanostructures on graphene thin films. Langmuir, 2010, 26(16): 13065–13070.[96] Liu C, Wang K, Luo S, et al. Direct electrodeposition of graphene enabling the one–step synthesis of graphene-metal nanocomposite films. Small, 2011, 7(9): 1203–1206.[97] Hu Y, Jin J, Wu P, et al. Graphene–gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation. Electrochim. Acta, 2010, 56(1): 491–500.[98] Zhu C, Han L, Hu P, et al. In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties. Nanoscale, 2012, 4(5): 1641–1646.[99] Zhou H, Qiu C, Liu Z, et al. Thickness-dependent morphologies of gold on N-layer graphenes. J. Am. Chem. Soc., 2009, 132(3): 944–946.[100] Xu Z, Gao H, Hu G. Solution-based synthesis and characterization of a silver nanoparticle-graphene hybrid film. Carbon, 2011, 49(14): 4731–4738.[101] Sreeprasad T, Maliyekkal S M, Lisha K, et al. Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard. Mater., 2011, 186(1): 921–931.[102] Lu W, Luo Y, Chang G, et al. Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens. Bioelectron., 2011, 26(12): 4791–4797.[103] YU Mei, LIU Shu-Peng, SUN Yu-Jing, et al. Fabrication and characterization of graphene-Ag nanoparticles composites. Journal of Inorganic Materials, 2012, 27(1): 89–94.[104] Yu Y, Li Y, Pan Y, et al. Fabrication of palladium/graphene oxide composite by plasma reduction at room temperature. Nanoscale Res. Lett., 2012, 7(1): 234.[105] Yu S H, Zhao G C. Preparation of platinum nanoparticles-graphene modified electrode and selective determination of rutin. Int. J. Electro., 2012, 2011(2012): 1–6.[106] FANG Jian-Jun, LI Su-Fang, ZHA Wen-Ke, et al. Microwave absorbing properties of nickel-coated graphene. Journal of Inorganic Materials, 2011, 26(5): 467–471.[107] Hu Q, Wang X, Chen H, et al. Synthesis of Ni/graphene sheets by an electroless Ni-plating method. New Carbon Mater., 2012, 27(1): 35–41.[108] Luo J, Jiang S, Zhang H, et al. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta, 2011, 709(4): 47–53.[109] Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall. Mater. Tran. B, 2012, 43(2): 316–324.[110] Marquardt D, Vollmer C, Thomann R, et al. The use of microwave irradiation for the easy synthesis of graphene-supported transition metal nanoparticles in ionic liquids. Carbon, 2011, 49(4): 1326–1332.[111] Choi S M, Seo M H, Kim H J, et al. Synthesis and characterization of graphene-supported metal nanoparticles by impregnation method with heat treatment in H2 atmosphere. Synthetic Met., 2011, 161(21/22): 2405–2411.[112] Liu J, Bai H, Wang Y, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater., 2010, 20(23): 4175–4181.[113] Du J, Lai X, Yang N, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano, 2010, 5(1): 590–596.[114] Yang N, Zhai J, Wang D, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. Acs Nano, 2010, 4(2): 887–894.[115] Tang Y B, Lee C S, Xu J, et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano, 2010, 4(6): 3482–3488.[116] Zhang Y, Tang Z R, Fu X, et al. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? Acs Nano, 2010, 4(12): 7303–7314.[117] Fan Y, Huang K J, Niu D J, et al. TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim. Acta, 2011, 56(12): 4685–4690.[118] Yin Z, Wu S, Zhou X, et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small, 2010, 6(2): 307–312.[119] Wang D, Kou R, Choi D, et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano, 2010, 4(3): 1587–1595.[120] Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology, 2009, 20(2009): 455602–6.[121] Chen S, Zhu J, Wu X, et al. Graphene oxide?MnO2 nanocomposites for supercapacitors. ACS Nano, 2010, 4(5): 2822–2830.[122] Yan J, Fan Z, Wei T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon, 2010, 48(13): 3825–3833.[123] Wu Z S, Ren W, Wen L, et al. Graphene snchored with Co3O4 nanoparticles as snode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4(6): 3187–3194.[124] Yan J, Wei T, Qiao W, et al. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta, 2010, 55(23): 6973–6978.[125] Zhu J, Sharma Y K, Zeng Z, et al. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C, 2011, 115(16): 8400–8406.[126] Liang J, Xu Y, Sui D, et al. Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J. Phys. Chem. C, 2010, 114(41): 17465–17471.[127] Zhou G, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater., 2010, 22(18): 5306–5313.[128] Dong Y, Zhang H, Rahman Z, et al. Graphene oxide-Fe3O4 magnetic nanocomposite with peroxidase-like activity for colorimetric detection of glucose. Nanoscale, 2012, 4(13): 3969–3976.[129] He H, Gao C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl. Mater. Inter., 2010, 2(11): 3201–3210.[130] Kassaee M, Motamedi E, Majdi M. Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite. Chem. Eng. J., 2011, 172(1): 540–549.[131] Son J Y, Shin Y H, Kim H, et al. NiO resistive random access memory nanocapacitor array on graphene. ACS Nano, 2010, 4(5): 2655–2658.[132] Ji Z, Wu J, Shen X, et al. Preparation and characterization of graphene/NiO nanocomposites. J. Mater. Sci., 2011, 46(5): 1190–1195.[133] Zhu X J, Hu J, Dai H L, et al. Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium ion battery. Electrochim. Acta, 2011, 64(1): 23–28.[134] Kottegoda I R M, Hayati N, Lin L, et al. Synthesis and characterization of graphene―nickel oxide nanostructures for fast charge-discharge application. Electrochim. Acta, 2011, 56(16): 5815–5822.[135] Wu S, Yin Z, He Q, et al. Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J. Phys. Chem. C, 2010, 114(27): 11816–11821.[136] Xu C, Wang X, Yang L, et al. Fabrication of a graphene–cuprous oxide composite. J. Solid State Chem., 2009, 182(9): 2486–2490.[137] Kim F, Luo J, Cruz-Silva R, et al. Self-propagating domino-like reactions in oxidized graphite. Adv. Funct. Mater., 2010, 20(17): 2867–2873.[138] Hao L, Song H, Zhang L, et al. SiO2/graphene composite for highly selective adsorption of Pb(II) ion. J. Colloid Interf. Sci., 2012, 369(1): 381–387.[139] TAO Li-Hua, CAI Yan, LI Zai-Jun, et al. Electrochemical properties of graphen/CdS quantum dot composites. Journal of Inorganic Materials, 2011, 26(9): 912–916.[140] Lin Y, Zhang K, Chen W, et al. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. Acs Nano, 2010, 4(6): 3033–3038.[141] Gao H, Xiao F, Ching C B, et al. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl. Mater. Inter., 2011, 3(8): 3049–3057.[142] Mou Z, Chen X, Du Y, et al. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl. Surf. Sci., 2011, 258(5): 1704–1710.[143] Geng D, Yang S, Zhang Y, et al. Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci., 2011, 257(21): 9193–9198.[144] WANG Can, WANG Yan-Li, ZHAN Liang, et al. Synthesis of nitrogen doped graphene through microwave irradiation. Journal of Inorganic Materials, 2012, 27(2): 146–150.[145] Wang H W, Hu Z A, Chang Y Q, et al. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta, 2010, 55(28): 8974–8980.[146] Marlinda A R, Huang N M, Muhamad M R, et al. Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett., 2012, 80: 9–12.[147] ZHANG Shu-Peng, SONG Hai-Ou. Preparation and characterization of graphene oxide/β-cyclodextrin supramolecular hybrid material. Journal of Inorganic Materials, 2012, 27(6): 596–602.[148] YUAN Wen-Hui, GU Ye-Jian, LI Bao-Qing, et al. Facile synthesis of graphene/ZnO nanocomposites by a low-temperature exfoliation method. Journal of Inorganic Materials, 2012, 27(6): 591–595.[149] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286.[150] Ramanathan T, Abdala A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol., 2008, 3(6): 327–331.[151] Liang J, Xu Y, Huang Y, et al. Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C, 2009, 113(22): 9921–9927.[152] Ji F, Li Y L, Feng J M, et al. Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries. J. Mater. Chem., 2009, 19(47): 9063–9067.[153] Walker L S, Marotto V R, Rafiee M A, et al. Toughening in graphene ceramic composites. Acs Nano, 2011, 5(4): 3182–3190.[154] Fan Y, Wang L, Li J, et al. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon, 2010, 48(6): 1743–1749.[155] 杨 帅. 少层石墨烯增强铜基复合材料制备和性能研究. 哈尔滨: 哈尔滨工业大学硕士论文, 2011.[156] Chen Y L, Hu Z A, Chang Y Q, et al. Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C., 2011, 115(5): 2563–2571.[157] Wang J, Li Z, Fan G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater., 2012, 66(8): 594–597.[158] Goyal V, Balandin A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl. Phys. Lett., 2012, 100(7): 073113–073114.[159] Chen L Y, Konishi H, Fehrenbacher A, et al. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Mater., 2012, 67(1): 29–32.[160] Xu Z, Buehler M J. Interface structure and mechanics between graphene and metal substrates: a first-principles study. J. Phys.: Conden. Matter., 2010, 22(48): 485301. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[14] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[15] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||