Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (3): 235-246.DOI: 10.3724/SP.J.1077.2013.12345
• Review • Next Articles
KUANG Da, HU Wen-Bin
Received:
2012-05-24
Revised:
2012-07-23
Published:
2013-03-20
Online:
2013-02-20
About author:
KUANG Da. E-mail: dlkda@sina.com
CLC Number:
KUANG Da, HU Wen-Bin. Research Progress of Graphene Composites[J]. Journal of Inorganic Materials, 2013, 28(3): 235-246.
Add to citation manager EndNote|Ris|BibTeX
[1] Novoselov K, Geim A, Morozov S, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669.[2] Weitz R T, Yacoby A. Nanomaterials: graphene rests easy. Nat. Nanotechnol., 2010, 5(10): 699–700.[3] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388.[4] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530–1534.[5] Ziegler K. Minimal conductivity of graphene: nonuniversal values from the Kubo formula. Phys. Rev. B, 2007, 75(23): 233407.[6] Nair R, Blake P, Grigorenko A, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308.[7] Williams J, DiCarlo L, Marcus C. Quantum Hall effect in a gate-controlled pn junction of graphene. Science, 2007, 317(5838): 638–641.[8] Geim A K, Novoselov K S. The rise of graphene. Nat. Mater., 2007, 6(3): 183–191.[9] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710.[10] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene. Chem. Rev., 2010, 110(1): 132–145.[11] Kim J, Kim F, Huang J. Seeing graphene-based sheets. Mater. Today, 2010, 13(3): 28–38.[12] Rao C, Sood A, Voggu R, et al. Some novel attributes of graphene. J. Phys. Chem. Lett., 2010, 1(2): 572–580.[13] Lv R, Terrones M. Towards new graphene materials: doped graphene sheets and nanoribbons. Mater. Lett., 2012, 78: 209–218.[14] Kuila T, Bose S, Mishra A K, et al. Chemical functionalization of graphene and its applications. Prog. Mater. Sci., 2012, 57(7): 1061–1105.[15] Britnell L, Gorbachev R, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071): 947–950.[16] Sire C, Ardiaca F, Lepilliet s, et al. Flexible GHz transistors derived from solution-based single-layer graphene. Nano Lett., 2012, 12(3): 1184–1188.[17] Wu Y, Perebeninos V, Lin Y, et al. Quantum behavior of graphene transistors near the scaling limit. Nano Lett., 2012, 12(3): 1417–1423[18] CHEN Cao, ZHUO Wen-Tao, ZHENG Wen-Ge, et al. Preparation and characterization of water-soluble graphene and highly conducting films. Journalof Inorganic Materials, 2011, 26(7): 707–710.[19] Yuan Xiaoya. Progress in preparation of graphene. Journal of Inorganic Materials, 2011, 26(6): 561–570.[20] WANG Lin, TIAN Lin-Hai, WEI Guo-Dong, et al. Epitaxial growth of graphene and their applications in devices. Journal of Inorganic Materials, 2011, 26(10): 1009–1019.[21] Strupinski W, Grodecki K, Wysmolek A, et al. Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett., 2011, 11(4): 1786–1791.[22] Losurdo M, Giangregorio M M, Capezzuto P, et al. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys., 2011, 13(46): 20836–20843.[23] Qi J, Zheng W, Zheng X, et al. Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl. Surf. Sci., 2011, 257(15): 6531–6534.[24] Emtsev KV, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater., 2009, 8(3): 203–207.[25] Li Q, Wang L, Zhu Y, et al. Solvothermal synthesis of graphene sheets at 300℃. Mater. Lett., 2011, 65(15): 2410–2412.[26] Wang X, Zhi L, Tsao N, et al. Transparent carbon films as electrodes in organic solar cells. Angew. Chem. Int. Ed., 2008, 120(16): 3032–3034.[27] Zhang L, Li X, Huang Y, et al. Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon, 2010, 48(8): 2367–2371.[28] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565.[29] Liu C, Hu G, Gao H. Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N-dimethylformamide. J. Supercrit. Fluid., 2012, 63: 99–104.[30] Chen L, Tang Y, Wang K, et al. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun., 2011, 13(2): 133–137.[31] An S J, Zhu Y, Lee S H, et al. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J. Phys. Chem. Lett., 2010, 1(8): 1259–1263.[32] Chen W, Yan L, Bangal P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 2010, 48(4): 1146–1152.[33] Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323): 549–552.[34] Hannon J B, Tromp R M. Pit formation during graphene synthesis on SiC(0001): In situ electron microscopy. Phys. Rev. B, 2008, 77(24): 241404–1–4.[35] LI Li-Min, TANG Jun, KANG Chao-Yang, et al. Epitaxial growth of multi-layer graphene on the substrate of Si(111). Journal of Inorganic Materials, 2011, 26(5): 472–476.[36] Wang H, Robinson JT, Li X, et al. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc., 2009, 131(29): 9910–9911.[37] Yan X, Cui X, Li L. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc., 2010, 132(17): 5944–5945.[38] Qian H, Negri F, Wang C, et al. Fully Conjugated tri(perylene bisimides): an approach to the construction of n-type graphene nanoribbons. J. Am. Chem. Soc., 2008, 130(52): 17970–17976.[39] Ramesha G K, Sampath S. Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C, 2009, 113(19): 7985–7989.[40] Wang Z, Zhou X, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C, 2009, 113(32): 14071–14075.[41] Guo H, Wang X, Qian Q, et al. A green approach to the synthesis of graphene nanosheets. ACS Nano, 2009, 3(9): 2653–2659.[42] LV Yan, WANG Zhi-Yong, ZHANG Hao, et al. Pore structures and electrochemical properties of graphene prepared by arc discharge method. Journal of Inorganic Materials, 2010, 25(7): 725–728.[43] LI Xu, ZHAO Wei-Feng, CHEN Guo-Hua. Research progress in preparation and characterization of graphenes. Materials Review, 2008, 22(8): 48–52.[44] Bolotin K, Sikes K, Hone J, et al. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett., 2008, 101(9): 96802–1–3.[45] Novoselov K, Geim A, Morozov S, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200.[46] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438(7065): 201–204.[47] Katsnelson M I. Graphene: carbon in two dimensions. Materials Today, 2007, 10(1): 20–27.[48] Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat. Nano, 2008, 3(8): 491–495.[49] Schedin F, Novoselov K, Morozov S, et al. Detection of individual gas molecules by graphene sensors. Appl. Phys. Lett., 2007, 2(1): 1–6.[50] Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379.[51] Gómez-Navarro C, Weitz R T, Bittner A M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett., 2007, 7(11): 3499–3503.[52] Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett., 2006, 96(25): 256802–1–4.[53] Dawlaty J M, Shivaraman S, Chandrashekhar M, et al. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett., 2008, 92(4): 042116–1–3.[54] Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science, 2008, 320(5873): 206–209.[55] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902–907.[56] Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene. Science, 2010, 328(5975): 213–216.[57] Hod O, Scuseria G E. Electromechanical properties of suspended graphene nanoribbons. Nano Lett., 2009, 9(7): 2619–2622.[58] Gao Y, Hao P. Mechanical properties of monolayer graphene under tensile and compressive loading. Physica E, 2009, 41(8): 1561–1566.[59] Frank O, Tsoukleri G, Parthenios J, et al. Compression behavior of single-layer graphenes. ACS Nano, 2010, 4(6): 3131–3138.[60] Schniepp H C, Kudin K N, Li J L, et al. Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano, 2008, 2(12): 2577–2584.[61] Li D, Kaner R B. Graphene-based materials. Science, 2008, 320(5880): 1170–1171.[62] Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem. Soc. Rev., 2012, 41(2): 666–686.[63] Verdejo R, Bernal M M, Romasanta L J, et al. Graphene filled polymer nanocomposites. J. Mater. Chem., 2011, 21(10): 3301–3310.[64] Wu Q, Xu Y, Yao Z, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano, 2010, 4(4): 1963–1970.[65] Yang J, Wu M, Chen F, et al. Preparation; characterization; and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites. J. Supercrit. Fluid., 2011, 56(2): 201–207.[66] Kim I, Jeong Y G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J. Polym. Sci. Pt. B: Polym. Phys., 2010, 48(8): 850–858.[67] Zhang H, Zheng W, Yan Q, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 2010, 51(5): 1191–1196.[68] Xiao X, Xie T, Cheng Y T. Self-healable graphene polymer composites. J. Mater. Chem., 2010, 20(17): 3508–3514.[69] Zhou X, Wu T, Hu B, et al. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem. Commun., 2010, 46(21): 3663–3665.[70] Zhang K, Zhang L L, Zhao X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater., 2010, 22(4): 1392–1401.[71] Wang H, Hao Q, Yang X, et al. Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Mater. Int., 2010, 2(3): 821–828.[72] Hu H, Wang X, Wang J, et al. Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett., 2010, 484(4/5/6): 247–253.[73] Muradyan V, Sokolov E, Piven N, et al. Anomalous behavior of dielectric permittivity of graphene-filled polymer composite. Tech. Phys. Lett., 2010, 36(12): 1115–1117.[74] Khan U, May P, O’Neill A, et al. Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon, 2010, 48(14): 4035–4041.[75] Zhao X, Zhang Q, Chen D, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules, 2010, 43(5): 2357–2363.[76] Vadukumpully S, Paul J, Mahanta N, et al. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon, 2011, 49(1): 198–205.[77] Huang Y, Qin Y, Wang N, et al. Reduction of graphite oxide with a grignard reagent for facile in situ preparation of Electrically conductive polyolefin/graphene nanocomposites. Macromol. Chem. Phys., 2012, 213(7): 720–728.[78] Fabbri P, Bassoli E, Bon S B, et al. Preparation and characterization of poly (butylene terephthalate)/graphene composites by in-situ polymerization of cyclic butylene terephthalate. Polymer, 2012, 53(4): 897–902.[79] Longun J, Iroh J O. Nano-graphene/polyimide composites with extremely high rubbery plateau modulus. Carbon, 2012, 50(5): 1823–1832.[80] Kandanur S S, Rafiee M A, Yavari F, et al. Suppression of wear in graphene polymer composites. Carbon, 2012, 50(9): 3178–3183.[81] Kulkarni D D, Choi I, Singamaneni S S, et al. Graphene oxide?polyelectrolyte nanomembranes. ACS Nano, 2010, 4(8): 4667–4676.[82] Zhao X, Zhang Q, Hao Y, et al. Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules, 2010, 43(22): 9411–9416.[83] Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 2010, 4(6): 3169–3174.[84] Cai D, Jin J, Yusoh K, et al. High performance polyurethane/ functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos. Sci. Technol., 2012, 72(6): 702–707.[85] Wang X, Xing W, Zhang P, et al. Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos. Sci. Technol., 2012, 72(6): 737–743.[86] Kuila T, Khanra P, Mishra A K, et al. Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Polym. Test., 2012, 31(2): 282–289.[87] Nanjundan A K, Choi H J, Bund A, et al. Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite system. J. Mater. Chem., 2012, 22(24): 12268–12274.[88] Chen D, Zhu H, Liu T. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl. Mater. Inter., 2010, 2(12): 3702–3708.[89] Yang Y K, He C E, Peng R G, et al. Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J. Mater. Chem., 2012, 22(12): 5666–5675.[90] Xu C, Wang X, Zhu J. Graphene? metal particle nanocomposites. J. Phys. Chem. C, 2008, 112(50): 19841–19845.[91] BAI Song, SHEN Xiao-Ping. Graphene-based inorganic nanocomposites. Progress in Chemistry, 2010, 22(11): 2106–2118.[92] Nethravathi C, Rajamathi J T, Ravishankar N, et al. Graphite oxide-intercalated anionic clay and its decomposition to graphene?inorganic material nanocomposites. Langmuir, 2008, 24(15): 8240–8244.[93] Park W I, Lee C H, Lee J M, et al. Inorganic nanostructures grown on graphene layers. Nanoscale, 2011, 3(9): 3522–3533.[94] Vinodgopal K, Neppolian B, Lightcap I V, et al. Sonolytic design of graphene?Au nanocomposites. simultaneous and sequential reduction of graphene oxide and Au(III). J. Phys. Chem. Lett., 2010, 1(13): 1987–1993.[95] Kim Y K, Na H K, Min D H. Influence of surface functionalization on the growth of gold nanostructures on graphene thin films. Langmuir, 2010, 26(16): 13065–13070.[96] Liu C, Wang K, Luo S, et al. Direct electrodeposition of graphene enabling the one–step synthesis of graphene-metal nanocomposite films. Small, 2011, 7(9): 1203–1206.[97] Hu Y, Jin J, Wu P, et al. Graphene–gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation. Electrochim. Acta, 2010, 56(1): 491–500.[98] Zhu C, Han L, Hu P, et al. In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties. Nanoscale, 2012, 4(5): 1641–1646.[99] Zhou H, Qiu C, Liu Z, et al. Thickness-dependent morphologies of gold on N-layer graphenes. J. Am. Chem. Soc., 2009, 132(3): 944–946.[100] Xu Z, Gao H, Hu G. Solution-based synthesis and characterization of a silver nanoparticle-graphene hybrid film. Carbon, 2011, 49(14): 4731–4738.[101] Sreeprasad T, Maliyekkal S M, Lisha K, et al. Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard. Mater., 2011, 186(1): 921–931.[102] Lu W, Luo Y, Chang G, et al. Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens. Bioelectron., 2011, 26(12): 4791–4797.[103] YU Mei, LIU Shu-Peng, SUN Yu-Jing, et al. Fabrication and characterization of graphene-Ag nanoparticles composites. Journal of Inorganic Materials, 2012, 27(1): 89–94.[104] Yu Y, Li Y, Pan Y, et al. Fabrication of palladium/graphene oxide composite by plasma reduction at room temperature. Nanoscale Res. Lett., 2012, 7(1): 234.[105] Yu S H, Zhao G C. Preparation of platinum nanoparticles-graphene modified electrode and selective determination of rutin. Int. J. Electro., 2012, 2011(2012): 1–6.[106] FANG Jian-Jun, LI Su-Fang, ZHA Wen-Ke, et al. Microwave absorbing properties of nickel-coated graphene. Journal of Inorganic Materials, 2011, 26(5): 467–471.[107] Hu Q, Wang X, Chen H, et al. Synthesis of Ni/graphene sheets by an electroless Ni-plating method. New Carbon Mater., 2012, 27(1): 35–41.[108] Luo J, Jiang S, Zhang H, et al. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta, 2011, 709(4): 47–53.[109] Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall. Mater. Tran. B, 2012, 43(2): 316–324.[110] Marquardt D, Vollmer C, Thomann R, et al. The use of microwave irradiation for the easy synthesis of graphene-supported transition metal nanoparticles in ionic liquids. Carbon, 2011, 49(4): 1326–1332.[111] Choi S M, Seo M H, Kim H J, et al. Synthesis and characterization of graphene-supported metal nanoparticles by impregnation method with heat treatment in H2 atmosphere. Synthetic Met., 2011, 161(21/22): 2405–2411.[112] Liu J, Bai H, Wang Y, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater., 2010, 20(23): 4175–4181.[113] Du J, Lai X, Yang N, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano, 2010, 5(1): 590–596.[114] Yang N, Zhai J, Wang D, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. Acs Nano, 2010, 4(2): 887–894.[115] Tang Y B, Lee C S, Xu J, et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano, 2010, 4(6): 3482–3488.[116] Zhang Y, Tang Z R, Fu X, et al. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? Acs Nano, 2010, 4(12): 7303–7314.[117] Fan Y, Huang K J, Niu D J, et al. TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim. Acta, 2011, 56(12): 4685–4690.[118] Yin Z, Wu S, Zhou X, et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small, 2010, 6(2): 307–312.[119] Wang D, Kou R, Choi D, et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano, 2010, 4(3): 1587–1595.[120] Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology, 2009, 20(2009): 455602–6.[121] Chen S, Zhu J, Wu X, et al. Graphene oxide?MnO2 nanocomposites for supercapacitors. ACS Nano, 2010, 4(5): 2822–2830.[122] Yan J, Fan Z, Wei T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon, 2010, 48(13): 3825–3833.[123] Wu Z S, Ren W, Wen L, et al. Graphene snchored with Co3O4 nanoparticles as snode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4(6): 3187–3194.[124] Yan J, Wei T, Qiao W, et al. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta, 2010, 55(23): 6973–6978.[125] Zhu J, Sharma Y K, Zeng Z, et al. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C, 2011, 115(16): 8400–8406.[126] Liang J, Xu Y, Sui D, et al. Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J. Phys. Chem. C, 2010, 114(41): 17465–17471.[127] Zhou G, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater., 2010, 22(18): 5306–5313.[128] Dong Y, Zhang H, Rahman Z, et al. Graphene oxide-Fe3O4 magnetic nanocomposite with peroxidase-like activity for colorimetric detection of glucose. Nanoscale, 2012, 4(13): 3969–3976.[129] He H, Gao C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl. Mater. Inter., 2010, 2(11): 3201–3210.[130] Kassaee M, Motamedi E, Majdi M. Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite. Chem. Eng. J., 2011, 172(1): 540–549.[131] Son J Y, Shin Y H, Kim H, et al. NiO resistive random access memory nanocapacitor array on graphene. ACS Nano, 2010, 4(5): 2655–2658.[132] Ji Z, Wu J, Shen X, et al. Preparation and characterization of graphene/NiO nanocomposites. J. Mater. Sci., 2011, 46(5): 1190–1195.[133] Zhu X J, Hu J, Dai H L, et al. Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium ion battery. Electrochim. Acta, 2011, 64(1): 23–28.[134] Kottegoda I R M, Hayati N, Lin L, et al. Synthesis and characterization of graphene―nickel oxide nanostructures for fast charge-discharge application. Electrochim. Acta, 2011, 56(16): 5815–5822.[135] Wu S, Yin Z, He Q, et al. Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J. Phys. Chem. C, 2010, 114(27): 11816–11821.[136] Xu C, Wang X, Yang L, et al. Fabrication of a graphene–cuprous oxide composite. J. Solid State Chem., 2009, 182(9): 2486–2490.[137] Kim F, Luo J, Cruz-Silva R, et al. Self-propagating domino-like reactions in oxidized graphite. Adv. Funct. Mater., 2010, 20(17): 2867–2873.[138] Hao L, Song H, Zhang L, et al. SiO2/graphene composite for highly selective adsorption of Pb(II) ion. J. Colloid Interf. Sci., 2012, 369(1): 381–387.[139] TAO Li-Hua, CAI Yan, LI Zai-Jun, et al. Electrochemical properties of graphen/CdS quantum dot composites. Journal of Inorganic Materials, 2011, 26(9): 912–916.[140] Lin Y, Zhang K, Chen W, et al. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. Acs Nano, 2010, 4(6): 3033–3038.[141] Gao H, Xiao F, Ching C B, et al. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl. Mater. Inter., 2011, 3(8): 3049–3057.[142] Mou Z, Chen X, Du Y, et al. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl. Surf. Sci., 2011, 258(5): 1704–1710.[143] Geng D, Yang S, Zhang Y, et al. Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci., 2011, 257(21): 9193–9198.[144] WANG Can, WANG Yan-Li, ZHAN Liang, et al. Synthesis of nitrogen doped graphene through microwave irradiation. Journal of Inorganic Materials, 2012, 27(2): 146–150.[145] Wang H W, Hu Z A, Chang Y Q, et al. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta, 2010, 55(28): 8974–8980.[146] Marlinda A R, Huang N M, Muhamad M R, et al. Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett., 2012, 80: 9–12.[147] ZHANG Shu-Peng, SONG Hai-Ou. Preparation and characterization of graphene oxide/β-cyclodextrin supramolecular hybrid material. Journal of Inorganic Materials, 2012, 27(6): 596–602.[148] YUAN Wen-Hui, GU Ye-Jian, LI Bao-Qing, et al. Facile synthesis of graphene/ZnO nanocomposites by a low-temperature exfoliation method. Journal of Inorganic Materials, 2012, 27(6): 591–595.[149] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286.[150] Ramanathan T, Abdala A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol., 2008, 3(6): 327–331.[151] Liang J, Xu Y, Huang Y, et al. Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C, 2009, 113(22): 9921–9927.[152] Ji F, Li Y L, Feng J M, et al. Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries. J. Mater. Chem., 2009, 19(47): 9063–9067.[153] Walker L S, Marotto V R, Rafiee M A, et al. Toughening in graphene ceramic composites. Acs Nano, 2011, 5(4): 3182–3190.[154] Fan Y, Wang L, Li J, et al. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon, 2010, 48(6): 1743–1749.[155] 杨 帅. 少层石墨烯增强铜基复合材料制备和性能研究. 哈尔滨: 哈尔滨工业大学硕士论文, 2011.[156] Chen Y L, Hu Z A, Chang Y Q, et al. Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C., 2011, 115(5): 2563–2571.[157] Wang J, Li Z, Fan G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater., 2012, 66(8): 594–597.[158] Goyal V, Balandin A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl. Phys. Lett., 2012, 100(7): 073113–073114.[159] Chen L Y, Konishi H, Fehrenbacher A, et al. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Mater., 2012, 67(1): 29–32.[160] Xu Z, Buehler M J. Interface structure and mechanics between graphene and metal substrates: a first-principles study. J. Phys.: Conden. Matter., 2010, 22(48): 485301. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium [J]. Journal of Inorganic Materials, 2025, 40(5): 473-480. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[12] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[13] | WANG Yue, WANG Xin, YU Xianli. Room-temperature Ferromagnetic All-carbon Films Based on Reduced Graphene Oxide [J]. Journal of Inorganic Materials, 2025, 40(3): 305-313. |
[14] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[15] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||