Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (10): 1223-1229.DOI: 10.15541/jim20230091
Special Issue: 【结构材料】高导热陶瓷(202409); 【结构材料】陶瓷基复合材料(202409)
• RESEARCH LETTER • Previous Articles Next Articles
SUN Xiaofan1,2(), CHEN Xiaowu1,2, JIN Xihai1,2(
), KAN Yanmei1,2, HU Jianbao1,2, DONG Shaoming1,2(
)
Received:
2023-02-22
Revised:
2023-04-20
Published:
2023-10-20
Online:
2023-05-15
Contact:
JIN Xihai, professor. E-mail: jinxihai@hotmail.com;About author:
SUN Xiaofan (1998-), male, Master candidate. E-mail: 2487801767@qq.com
Supported by:
CLC Number:
SUN Xiaofan, CHEN Xiaowu, JIN Xihai, KAN Yanmei, HU Jianbao, DONG Shaoming. Fabrication and Properties of AlN-SiC Multiphase Ceramics via Low Temperature Reactive Melt Infiltration[J]. Journal of Inorganic Materials, 2023, 38(10): 1223-1229.
Material | Mass percent of LCP/% | Mass percent of HCP/% |
---|---|---|
α-Si3N4 | 20.17 | 15.66 |
Carbon black | 8.65 | 6.71 |
Phenolic resin | 17.29 | 26.85 |
Dibutyl phthalate (DBP) | 5.76 | 4.47 |
Polyvinyl butyral (PVB) | 7.20 | 5.59 |
Castor oil | 0.58 | 0.45 |
Ethanol absolute | 40.35 | 40.27 |
Table 1 Chemical composition of the slurries used for different types of C-Si3N4 infiltration preform preparation
Material | Mass percent of LCP/% | Mass percent of HCP/% |
---|---|---|
α-Si3N4 | 20.17 | 15.66 |
Carbon black | 8.65 | 6.71 |
Phenolic resin | 17.29 | 26.85 |
Dibutyl phthalate (DBP) | 5.76 | 4.47 |
Polyvinyl butyral (PVB) | 7.20 | 5.59 |
Castor oil | 0.58 | 0.45 |
Ethanol absolute | 40.35 | 40.27 |
Fig. 1 SEM images of porous C-Si3N4 infiltration preforms with different carbon contents (a, b) Low carbon content preform (LCP); (c, d) High carbon content preform (HCP)
Fig. 2 Mercury porosimetry curves of the C-Si3N4 infiltration preforms with different carbon contents (a) Cumulative volume percentage vs pore diameter; (b) Incremental intrusion vs pore diameter
Fig. 3 SEM image and EDS line scanning of the melt/preform interface region in the post melt infiltrated Si-Al/C-Si3N4 system, using (a, b) Si-Al ingot and (c, d) Si-Al powder as infiltration medium Colorful figures are available on the website
Fig. 4 (a) XRD patterns of AlN-SiC multiphase ceramics prepared from different types of C-Si3N4 preform, and (b) changes of standard Gibbs free energy of reaction (3-6) as a function of temperatures calculated with HSC 6.0 software
Fig. 5 SEM images of AlN-SiC multiphase ceramics prepared from different C-Si3N4 preforms and their corresponding EDS mapping (a-e) Low carbon content preform; (f-j) High carbon content preform
Preform type | Bulk density/ (g·cm-3) | Hardness/GPa | Bending strength/MPa |
---|---|---|---|
LCP | 2.83 | 12.8±0.2 | 198.3±4.6 |
HCP | 2.95 | 16.9±0.4 | 320.1±25.1 |
Table 2 Density and mechanical properties of AlN-SiC multiphase ceramics prepared from different types of C-Si3N4 preform
Preform type | Bulk density/ (g·cm-3) | Hardness/GPa | Bending strength/MPa |
---|---|---|---|
LCP | 2.83 | 12.8±0.2 | 198.3±4.6 |
HCP | 2.95 | 16.9±0.4 | 320.1±25.1 |
[1] |
SHEN X, LI M, DAI Y, et al. The effects of preparation temperature on the SiCf/SiC 3D4d woven composite. Ceramics International, 2020, 46(9): 13088.
DOI URL |
[2] |
LIU Y, CHAI N, QIN H, et al. Tensile fracture behavior and strength distribution of SiCf/SiC composites with different SiBN interface thicknesses. Ceramics International, 2015, 41(1): 1609.
DOI URL |
[3] |
YANG B, ZHOU X, CHAI Y. Mechanical properties of SiCf/SiC composites with PyC and the BN interface. Ceramics International, 2015, 41(5): 7185.
DOI URL |
[4] |
ZHONG Q, ZHANG X, DONG S, et al. Reactive melt infiltrated Cf/SiC composites with robust matrix derived from novel engineered pyrolytic carbon structure. Ceramics International, 2017, 43(7): 5832.
DOI URL |
[5] |
CHEN B W, NI D W, WANG J X, et al. Ablation behavior of Cf/ZrC-SiC-based composites fabricated by an improved reactive melt infiltration. Journal of the European Ceramic Society, 2019, 39(15): 4617.
DOI URL |
[6] | MU Y, ZHOU W, WANG H, et al. Mechanical and dielectric properties of 2.5D SiCf/SiC-Al2O3composites prepared via precursor infiltration and pyrolysis. Materials Science and Engineering: A, 2014, 596: 64. |
[7] |
SUN X, LIU H, LI J, et al. Effects of CVD SiBCN interphases on mechanical and dielectric properties of SiCf/SiC composites fabricated via a PIP process. Ceramics International, 2016, 42(1): 82.
DOI URL |
[8] |
WU P, LIU Y, XU S, et al. Mechanical properties and strengthening mechanism of SiCf/SiC mini-composites modified by SiC nanowires. Ceramics International, 2021, 47(2): 1819.
DOI URL |
[9] | SANTORO U, NOVITSKAYA E, KARANDIKAR K, et al. Phase stability of SiC/SiC fiber reinforced composites: the effect of processing on the formation of α and β phases. Materials Letters, 2019, 241: 123. |
[10] |
CHEN X, FENG Q, GAO L, et al. Interphase degradation of three-dimensional Cf/SiC-ZrC-ZrB2composites fabricated via reactive melt infiltration. Journal of the American Ceramic Society, 2017, 100(10): 4816.
DOI URL |
[11] |
CAO X, YIN X, MA X, et al. The microstructure and properties of SiC/SiC-based composites fabricated by low-temperature melt infiltration of Al-Si alloy. Ceramics International, 2016, 42(8): 10144.
DOI URL |
[12] |
TAO P, WANG Y. Improved thermal conductivity of silicon carbide fibers-reinforced silicon carbide matrix composites by chemical vapor infiltration method. Ceramics International, 2019, 45(2): 2207.
DOI URL |
[13] | AOKI T, OGASAWARA T, OKUBO Y, et al. Fabrication and properties of Si-Hf alloy melt-infiltrated Tyranno ZMI fiber/SiC- based matrix composites. Composites Part A: Applied Science and Manufacturing, 2014, 66: 155. |
[14] | AOKI T, OGASAWARA T. Tyranno ZMI fiber/TiSi2-Si matrix composites for high-temperature structural applications. Composites Part A: Applied Science and Manufacturing, 2015, 76: 102. |
[15] |
GAO Y, LIU Y, WANG J, et al. Formation mechanism of Si-Y-C ceramic matrix by reactive melt infiltration using Si-Y alloy and properties of C/Si-Y-C composites. Ceramics International, 2020, 46(11): 18976.
DOI URL |
[16] |
LI Z, GUO R, LI L, et al. Improvement in high-temperature oxidation resistance of SiC nanocrystalline ceramics by doping AlN. Ceramics International, 2021, 47(21): 30999.
DOI URL |
[17] |
FUJII H, NAKAE H, OKADA K. Interfacial reaction wetting in the boron nitride/molten aluminum system. Acta Metallurgica et Materialia, 1993, 41(10): 2963.
DOI URL |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | JIN Min, MA Yupeng, WEI Tianran, LIN Siqi, BAI Xudong, SHI Xun, LIU Xuechao. Growth and Characterization of Large-size InSe Crystal from Non-stoichiometric Solution via a Zone Melting Method [J]. Journal of Inorganic Materials, 2024, 39(5): 554-560. |
[10] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[11] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[12] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[13] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[14] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[15] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||