Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 645-651.DOI: 10.15541/jim20200507
• RESEARCH ARTICLE • Previous Articles Next Articles
DONG Kangjia1(), JIANG Chen1(
), REN Shaobin2, LANG Xiaohu2, GAO Rui1, YE Hui1
Received:
2020-08-28
Revised:
2020-10-15
Published:
2021-06-20
Online:
2020-12-10
Contact:
JIANG Chen, professor. E-mail: jc_bati@163.com
About author:
DONG Kangjia(1997-), male, Master candidate. E-mail: 1967188330@qq.com
Supported by:
CLC Number:
DONG Kangjia, JIANG Chen, REN Shaobin, LANG Xiaohu, GAO Rui, YE Hui. Anisotropic Calculation of Mechanical Property of GaAs Crystal[J]. Journal of Inorganic Materials, 2021, 36(6): 645-651.
Mechanical parameters of GaAs | S11/ (×10-12, Pa-1) | S12/ (×10-12, Pa-1) | S44/ (×10-12, Pa-1) |
---|---|---|---|
Value | 11.7 | 3.7 | 16.8 |
Table 1 GaAs material parameters[10]
Mechanical parameters of GaAs | S11/ (×10-12, Pa-1) | S12/ (×10-12, Pa-1) | S44/ (×10-12, Pa-1) |
---|---|---|---|
Value | 11.7 | 3.7 | 16.8 |
Data source | Hardness/GPa | KIC/(MPa·m1/2) | Comments |
---|---|---|---|
Chen, et al[ | 5.27-5.45 | 0.482-0.579 | <110> and <100> crystal direction measured by different loads |
Xu, et al[ | 6-10 | - | Measured by different loads |
Ponraj, et al[ | 8.2-10.4 | - | Measured by different loads |
Hjort, et al[ | 7 | 0.44 | Average value |
This work | 5.69-6.21 | 0.30-0.60 | Measured by single loads and different crystal orientations |
Table 2 Vickers hardness and fracture toughness[7,8,9,10]
Data source | Hardness/GPa | KIC/(MPa·m1/2) | Comments |
---|---|---|---|
Chen, et al[ | 5.27-5.45 | 0.482-0.579 | <110> and <100> crystal direction measured by different loads |
Xu, et al[ | 6-10 | - | Measured by different loads |
Ponraj, et al[ | 8.2-10.4 | - | Measured by different loads |
Hjort, et al[ | 7 | 0.44 | Average value |
This work | 5.69-6.21 | 0.30-0.60 | Measured by single loads and different crystal orientations |
[1] |
WASMER K, BALLIF C, CÉDRIC P, et al. Dicing of gallium arsenide high performance laser diodes for industrial applications: part I: scratching operation. Journal of Materials Processing Technology, 2008,198(1/2/3):114-121.
DOI URL |
[2] |
WASMER K, BALLIF C, POUVREAU C, et al. Dicing of gallium- arsenide high performance laser diodes for industrial applications: Part II. cleavage operation. Journal of Materials Processing Technology, 2008,198(1/2/3):105-113.
DOI URL |
[3] |
WASMER K, BALLIF C, GASSILLOUD R, et al. Cleavage fracture of brittle semiconductors from the nanometre to the centimetre scale. Advanced Engineering Materials, 2005,7(5):309-317.
DOI URL |
[4] |
JIANG C, HUANG J L, JIANG Z Y, et al. Estimation of energy savings when adopting ultrasonic vibration-assisted magnetic compound fluid polishing. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021,8:1-11.
DOI URL |
[5] |
JIANG C, WU T, YE H, et al. Estimation of energy and time savings in optical glass manufacturing when using ultrasonic vibration- assisted grinding. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019,6(1):1-9.
DOI URL |
[6] |
GAO R, JIANG C, LANG X H, et al. Experimental investigation of influence of scratch features on GaAs cleavage plane during cleavage processing using a scratching capability index. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, DOI: 10.1007/s40684-020-00241-3.
DOI |
[7] |
CHEN J Y, DING F, LUO X C, et al. Fundamental study of ductile- regime diamond turning of single crystal gallium arsenide. Precision Engineering, 2019,62:71-82.
DOI URL |
[8] | XU L X, KONG L Q, ZHAO H W, et al. Mechanical behavior of undoped n-Type GaAs under the indentation of berkovich and Flat- Tip indenters. Materials, 2019, 12(7): 1192-1-10. |
[9] | PONRAJ J S, BUFFAGNI E, DEIVASIGAMANI G, , et al. Studies of nanoindentation and residual stress analysis of Ge/GaAs epilayers. Semiconductor Science and Technology, 2015, 30(5): 055004- 1-7. |
[10] | HJORT K, SODERKVIST J, SCHWEITZ J A. Gallium arsenide as a mechanical material. Journal of Micromechanics & Microengineering, 1994,4(1):1-13. |
[11] |
HOPCROFT M A, NIX W D, KENNY T W. What is the Young's modulus of silicon? Journal of Microelectromechanical Systems, 2010,19(2):229-238.
DOI URL |
[12] |
TING T C T. On anisotropic elastic materials for which Young’s modulus E(n) is independent of n or the shear modulus G(n, m) is independent of n and m. Journal of Elasticity, 2005,81(3):271-292.
DOI URL |
[13] |
KNOWLES K M, HOWIE P R. The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials. Journal of Elasticity, 2015,120(1):87-108.
DOI URL |
[14] |
BRANTLEY W. A. Calculated elastic constants for stress problems associated with semiconductor devices. Journal of Applied Physics, 1973,44(1):534.
DOI URL |
[15] |
LUAN X H, QIN H B, LIU F M, et al. The mechanical properties and elastic anisotropies of cubic Ni3Al from first principles calculations. Crystals, 2018,8(8):307-309.
DOI URL |
[16] |
RYSAEVA L K, BAIMOVA Y A, DMITRIEV S V, et al. Elastic properties of diamond-like phases based on carbon nanotubes. Diamond and Related Materials, 2019,97:107411.
DOI URL |
[17] | LIU J L, YE L H, ZHOU Y W, et al. Anisotropy of elasticity of a Ni base single crystal superalloy. Acta Metallurgica Sinica, 2020,56(06):855-862. |
[18] |
BERGNER F, SCHAPER M, HAMMER R, et al. Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime. International Journal of Materials Research (formerly Zeitschrift fuer Metallkunde), 2007,98(8):735-741.
DOI URL |
[19] | CHENG J, NIU Y B, WANG J H, et al. Analysis of anisotropic mechanical properties of monocrystalline silicon callow. Journal of Harbin Institute of Technology, 2019,51(7):16-23. |
[1] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[2] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[3] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[4] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[5] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[6] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[7] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[8] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[9] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[10] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[11] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[12] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[13] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[14] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[15] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||