Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (12): 1330-1336.DOI: 10.15541/jim20180198
Special Issue: 介电储能陶瓷
• RESEARCH PAPER • Previous Articles Next Articles
LIU Guo-Bao1, WANG Hua1,2, XIE Hang1, PANG Si-Jian1, ZHOU Chang-Rong1,2, XU Ji-Wen1,2
Received:
2018-04-27
Published:
2018-12-20
Online:
2018-11-27
About author:
LIU Guo-Bao. E-mail: liuguobao77@163.com
Supported by:
CLC Number:
LIU Guo-Bao, WANG Hua, XIE Hang, PANG Si-Jian, ZHOU Chang-Rong, XU Ji-Wen. Energy Storage and Strain Property of (Bi0.5Na0.5)0.935Ba0.065TiO3-xBiScO3 Ceramics[J]. Journal of Inorganic Materials, 2018, 33(12): 1330-1336.
Fig. 6 Temperature dependence of relative permittivity (εr) and loss tangent (tanδ) of BNBT-xBS ceramics(a) x=0; (b) x=0.025; (c) x=0.050; (d) x=0.075; (e) x=0.100
[1] | WANG C H .Electrical and physical properties of lead-free (Na0.5K0.5)NbO3-Bi0.5(Na0.90K0.10)0.5TiO3 ceramics. Key Engineering Materials, 2014, 602-603(9): 791-794. |
[2] | ZHANG Z Y, YANG D L, ZHANG W,et al. Current status and prospects of (Bi0.5Na0.5)TiO3-based lead-free piezoelectric ceramics. Journal of Materials Science and Engineering, 2006, 24(5): 796-800. |
[3] | TAKENAKA T, MARUYAMA K I, SAKATA K.(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics.Japanese Journal of Applied Physics, 1991, 30(9B): 2236-2239. |
[4] | HAO J J, LI L T, WANG X H,et al. Progress in research on lead-free piezoelectric ceramic. Journal of The Chinese Ceramic Society, 2004, 32(2): 189-195. |
[5] | LIDJICI H, LAGOUN B, BERRAHAL M,et al. XRD, Raman and electrical studies on the (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 lead free ceramics. Journal of Alloys and Compounds, 2015, 618: 643-648. |
[6] | LI L, HAO J, XU Z,et al. Electric field-induced large strain of (Bi1/2Na1/2)0.935Ba0.065TiO3-CaYAlO4 lead-free ceramics. Materials Letters, 2017, 209: 408-412. |
[7] | XU Q, XIE J, HE Z,et al. Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method. Journal of the European Ceramic Society, 2017, 37(1): 99-106. |
[8] | OGIHARA H, RANDALL C A, TROLIER-MCKINSTRY S.High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics.Journal of the American Ceramic Society, 2009, 92(8): 1719-1724. |
[9] | OGIHARA H, RANDALL C A, TROLIER-MCKINSTRY S.Weakly coupled relaxor behavior of BaTiO3-BiScO3 ceramics.Journal of the American Ceramic Society, 2009, 92(1): 110-118. |
[10] | CAO W P, LI W L, FENG Y,et al. Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems. Applied Physics Letters, 2016, 108(20): 3687-3694. |
[11] | CAO W P, LI W L, DAI X F,et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. Journal of the European Ceramic Society, 2016, 36(3): 593-600. |
[12] | KRAUSS W, SCHUTZ D, MAUTNER F A,et al. Piezoelectric properties and phase transition temperatures of the solid solution of (1-x)(Bi0.5Na0.5)TiO3-xSrTiO3. Journal of the European Ceramic Society, 2010, 30(8): 1827-1832. |
[13] | ZHANG S T, KOUNGA A B, AULBACH E. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Applied Physics Letters, 2007, 91(11): 112906-1-3. |
[14] | GUO Y P, GU M Y, LUO H S, et al. Composition-induced antiferroelectric phase and giant strain in lead-free (Nay, Biz)Ti1-xO3(1-x)-xBaTiO3 ceramics. Physical Review B, 2011, 83(83): 3002-3005. |
[15] | LIU X, DU H, LIU X,et al. Energy storage properties of BiTi0.5Zn0.5O3-Bi0.5Na0.5TiO3-BaTiO3 relaxor ferroelectrics. Ceramics International, 2016, 42(15): 17876-17879. |
[16] | DONG X L. Doped Pb(Zr,Sn,Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application.Ferroelectric, 2008, 363(1): 56-63. |
[17] | HAO J, YE C, SHEN B, et al. Enhanced electrostricitive properties Enhanced electrostricitive properties and thermal endurance of textured (Bi0.5Na0.5)TiO3-BaTiO3- (K0.5Na0.5)NbO3 ceramics. Journal of Applied Physics, 2013, 114(5): 054101-1-5. |
[18] | HUSSAIN A, RAHMAN J U, ZAMAN A,et al. Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3-SrZrO3 ceramics. Materials Chemistry and Physics, 2014, 143(3): 1282-1288. |
[19] | HAO J, SHEN B, ZHAI J, et al. Phase transitional behavior Phase transitional behavior and electric field-induced large strain in alkali niobate-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. Journal of Applied Physics,2014, 115(3): 034101-1-8. |
[20] | WANG K, HUSSAIN A, JO W,et al. Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics. Journal of the American Ceramic Society, 2012, 95(7): 2241-2247. |
[21] | PALEI P, SONIA, KUMAR P.Dielectric, ferroelectric and piezoelectric properties of (1-x)[K0.5Na0.5NbO3]-x[LiSbO3] ceramics. Journal of Physics and Chemistry of Solids, 2012, 73(7): 827-833. |
[22] | CHAUHAN A, PATEL S, VAISH R,et al. Anti-ferroelectric ceramics for high energy density capacitors. Materials, 2015, 8(12): 8009-8031. |
[23] | LI Y, CAO W, LI Q, et al .Electric field induced metastable ferroelectric phase Electric field induced metastable ferroelectric phase and its behavior in (Pb, La)(Zr,Sn,Ti)O3 antiferroelectric single crystal near morphotropic phase boundary. Applied Physics Letters, 2014, 104(5): 052912-1-4. |
[24] | XU Y, YAN Y, YOUNG S E,et al. Influence of perpendicular compressive stress on the phase transition behavior in (Pb,La,Ba,)(Zr,Sn,Ti)O3 antiferroelectric ceramics. Ceramics International, 2016, 42(1): 721-726. |
[25] | NEURGAONKAR R R, OLIVER J R, CORY W K,et al. Structural and dielectric properties of the phase Pb1-2xKxM3+xNb2O6, M = La or Bi. Materials Research Bulletin, 1983, 18(6): 735-741. |
[26] | NEURGAONKAR R R, NELSON J G, OLIVER J R,et al. Ferroelectric and structural properties of the tungsten bronze system K2Ln3+Nb5O15, Ln = La to Lu. Materials Research Bulletin, 1990, 25(8): 959-970. |
[27] | WU Y, FORBESS M J, SERAJI S,et al. Oxygen-vacancy-related dielectric relaxation in SrBi2Ta1.8V0.2O9 ferroelectrics. Journal of Applied Physics, 2001, 89(10): 5647-5652. |
[28] | ZHANG H, XU P, PATTERSON E,et al. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3- based lead-free incipient piezoceramics. Journal of the European Ceramic Society, 2015, 35(9): 2501-2512. |
[29] | ZANG J, LI M, SINCLAIR D C,et al. Impedance spectroscopy of (Bi1/2Na1/2)TiO3-BaTiO3 ceramics modified with (K0.5Na0.5)NbO3. Journal of the American Ceramic Society, 2014, 97(5): 1523-1529. |
[30] | JO W, SCHAAB S, SAPPER E, ,et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3. Journal of Applied Physics, 2011, 110(7): 074106-1-9. |
[31] | JIANG C, ZHOU X, ZHOU K,et al. Grain oriented Na0.5Bi0.5TiO3-BaTiO3, ceramics with giant strain response derived from single-crystalline Na0.5Bi0.5TiO3-BaTiO3 templates. Journal of the European Ceramic Society, 2016, 36(6): 1377-1383. |
[32] | CHENG J R, SHI G Y, QI Y F,et al. Impedance spectroscopy study of high temperature BiFeO3-PbTiO3 based ceramics. Journal of Shanghai University(Natural Science Edition), 2011, 17(4): 213-218. |
[1] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[2] | SHI Ruijian, LEI Junwei, ZHANG Yi, XIE Aiwen, ZUO Ruzhong. Linear-like NaNbO3-based Lead-free Relaxor Antiferroelectric Ceramics with Excellent Energy-storage and Charge-discharge Properties [J]. Journal of Inorganic Materials, 2024, 39(4): 423-431. |
[3] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[4] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[5] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[6] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[7] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[8] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[9] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[10] | SHI Zhe, LIU Weiye, ZHAI Dong, XIE Jianjun, ZHU Yufang. Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties [J]. Journal of Inorganic Materials, 2023, 38(7): 763-770. |
[11] | WU Wei, BAKHET Shahd, ASANTE Naomi Addai, KAREEM Shefiu, KOMBO Omar Ramadhan, LI Binbin, DAI Honglian. In vitro Study of Biphasic Calcium Magnesium Phosphate Microspheres for Angiogenesis and Bone Formation [J]. Journal of Inorganic Materials, 2023, 38(7): 830-838. |
[12] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[13] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[14] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[15] | LUO Shuwen, MA Mingsheng, LIU Feng, LIU Zhifu. Corrosion Behavior and Mechanism of LTCC Materials in Ca-B-Si System [J]. Journal of Inorganic Materials, 2023, 38(5): 553-560. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||