Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (10): 1175-1181.DOI: 10.15541/jim20240125
• RESEARCH LETTER • Previous Articles Next Articles
CHEN Mengjie1,2(), WANG Qianqian1,2, WU Chengtie1,2, HUANG Jian1,2,3(
)
Received:
2024-03-14
Revised:
2024-05-04
Published:
2024-10-20
Online:
2024-05-16
Contact:
HUANG Jian, professor. E-mail: huangj@shu.edu.cnAbout author:
CHEN Mengjie (1998-), male, Master candidate. E-mail: chenmengjie20@mails.ucas.ac.cn
Supported by:
CLC Number:
CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor[J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181.
Name | Chemical formula | Mineralization ability |
---|---|---|
Wollastonite | CaSiO3 | ▲▲▲▲* |
Dicalcium silicate | Ca2SiO4 | ▲▲▲▲ |
Tricalcium silicate | Ca3SiO5 | ▲▲▲▲ |
Akermanite | Ca2MgSi2O7 | ▲▲▲ |
Merrwinite | Ca3MgSi2O8 | ▲▲▲ |
Diopside | CaMgSi2O6 | ▲▲ |
Monticellite | CaMgSiO4 | ▲▲ |
Baghdadite | Ca3ZrSi2O9 | ▲▲ |
Dimagnesium silicate | Mg2SiO4 | ▲ |
Magnesium silicate | MgSiO3 | ▲ |
Zinc silicate | Zn2SiO4 | ▲ |
Hardystonite | Ca2ZnSi2O7 | ▲ |
Sphene | CaTiSiO5 | ▲ |
Strontium-akermanite | Sr2MgSi2O7 | ▲ |
Strontium-hardystonite | Sr2ZnSi2O7 | ▲ |
Table 1 Apatite-mineralization ability of silicate bioceramics[32]
Name | Chemical formula | Mineralization ability |
---|---|---|
Wollastonite | CaSiO3 | ▲▲▲▲* |
Dicalcium silicate | Ca2SiO4 | ▲▲▲▲ |
Tricalcium silicate | Ca3SiO5 | ▲▲▲▲ |
Akermanite | Ca2MgSi2O7 | ▲▲▲ |
Merrwinite | Ca3MgSi2O8 | ▲▲▲ |
Diopside | CaMgSi2O6 | ▲▲ |
Monticellite | CaMgSiO4 | ▲▲ |
Baghdadite | Ca3ZrSi2O9 | ▲▲ |
Dimagnesium silicate | Mg2SiO4 | ▲ |
Magnesium silicate | MgSiO3 | ▲ |
Zinc silicate | Zn2SiO4 | ▲ |
Hardystonite | Ca2ZnSi2O7 | ▲ |
Sphene | CaTiSiO5 | ▲ |
Strontium-akermanite | Sr2MgSi2O7 | ▲ |
Strontium-hardystonite | Sr2ZnSi2O7 | ▲ |
Fig. 4 Linear relationships between VBMFmax and the degradation value of silicate bioceramics 7-day ion release values of (a) Ca and (b) Si in simulated body fluid (SBF); 28-day weight loss values in (c) Tris-HCl from references and (d) Tris-HCl from the degradation experiments
Bioceramic | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | Cell volume/Å3 | Density/ (g·cm-3) | Void space/% | |
---|---|---|---|---|---|---|---|---|---|---|
α-CaSiO3 | Calc. | 11.9532 | 6.9367 | 10.6153 | 90 | 111.274 | 90 | 820.198 | 2.8224 | 58.32 |
Expt. | 11.8322 | 6.8624 | 10.5297 | 90 | 111.245 | 90 | 796.878 | N/A | N/A | |
β-CaSiO3 | Calc. | 8.0250 | 7.3910 | 7.1500 | 90.083 | 95.531 | 103.437 | 410.433 | 2.8201 | 58.03 |
Expt. | 7.9400 | 7.3200 | 7.0700 | 90.030 | 95.370 | 103.430 | 397.818 | N/A | N/A | |
Ca2SiO4 | Calc. | 5.1234 | 11.3455 | 6.8071 | 90 | 90 | 90 | 395.748 | 2.8910 | 57.19 |
Expt. | 5.0910 | 11.3710 | 6.7820 | 90 | 90 | 90 | 392.608 | N/A | N/A | |
Ca3SiO5 | Calc. | 11.7501 | 14.3209 | 13.7622 | 104.813 | 94.354 | 90.117 | 2231.821 | 3.0580 | 54.91 |
Expt. | 11.6700 | 14.2400 | 13.7200 | 105.500 | 94.330 | 90 | 2190.324 | N/A | N/A | |
Ca2MgSi2O7 | Calc. | 7.9073 | 7.9073 | 5.053 | 90 | 90 | 90 | 315.940 | 2.8661 | 57.30 |
Expt. | 7.8900 | 7.8900 | 5.0410 | 90 | 90 | 90 | 313.813 | N/A | N/A | |
Ca2ZnSi2O7 | Calc. | 7.9043 | 7.9043 | 5.0592 | 90 | 90 | 90 | 316.089 | 3.2961 | 57.87 |
Expt. | 7.8279 | 7.8279 | 5.0138 | 90 | 90 | 90 | 307.226 | N/A | N/A | |
Ca3MgSi2O8 | Calc. | 9.8453 | 5.2925 | 13.7871 | 90 | 97.954 | 90 | 711.477 | 3.0690 | 54.41 |
Expt. | 9.9678 | 5.2693 | 13.6701 | 90 | 97.720 | 90 | 711.498 | N/A | N/A | |
Ca3ZrSi2O9 | Calc. | 7.4323 | 10.3145 | 10.5148 | 90 | 91.113 | 90 | 805.919 | 3.3927 | 56.03 |
Expt. | 7.3603 | 10.1766 | 10.4514 | 90 | 90.875 | 90 | 782.748 | N/A | N/A | |
CaMgSi2O6 | Calc. | 9.8690 | 9.0131 | 5.3152 | 90 | 106.122 | 90 | 454.197 | 3.1672 | 52.58 |
Expt. | 9.7760 | 8.9790 | 5.2670 | 90 | 105.940 | 90 | 444.554 | N/A | N/A | |
CaMgSiO4 | Calc. | 5.2260 | 6.8631 | 9.1738 | 90 | 90 | 90 | 327.740 | 3.1714 | 52.65 |
Expt. | 5.2408 | 6.8696 | 9.1348 | 90 | 90 | 90 | 328.869 | N/A | N/A | |
CaTiSiO5 | Calc. | 7.1294 | 8.7726 | 6.6609 | 90 | 114.041 | 90 | 380.457 | 3.4231 | 53.08 |
Expt. | 7.0730 | 8.7180 | 6.5550 | 90 | 113.970 | 90 | 369.339 | N/A | N/A | |
Ca2Al2SiO7 | Calc. | 7.6773 | 7.6773 | 5.1888 | 90 | 90 | 90 | 305.833 | 2.9777 | 56.92 |
Expt. | 7.6764 | 7.6764 | 5.1908 | 90 | 90 | 90 | 305.878 | N/A | N/A | |
Ca5(PO4)2SiO4 | Calc. | 6.8737 | 10.2116 | 15.4913 | 90 | 90 | 90 | 1087.357 | 2.9470 | 55.64 |
Expt. | 6.7370 | 10.1320 | 15.5080 | 90 | 90 | 90 | 1058.565 | N/A | N/A | |
Mg2SiO4 | Calc. | 4.8043 | 10.3245 | 6.0475 | 90 | 90 | 90 | 299.970 | 3.1157 | 52.95 |
Expt. | 4.7630 | 10.2400 | 5.9990 | 90 | 90 | 90 | 292.590 | N/A | N/A | |
MgSiO3 | Calc. | 9.3655 | 8.8559 | 5.3797 | 90 | 90 | 90 | 446.190 | 2.9892 | 54.83 |
Expt. | 9.2500 | 8.7400 | 5.3200 | 90 | 90 | 90 | 430.095 | N/A | N/A | |
Na2CaSiO4 | Calc. | 7.5297 | 7.5297 | 7.5297 | 90 | 90 | 90 | 426.904 | 2.7719 | 53.91 |
Expt. | 7.4800 | 7.4800 | 7.4800 | 90 | 90 | 90 | 418.509 | N/A | N/A | |
Na2Ca2Si3O9 | Calc. | 10.6053 | 10.6053 | 13.3064 | 89.839 | 90.161 | 120.224 | 1293.145 | 2.7306 | 58.66 |
Expt. | 10.5989 | 10.5989 | 13.3074 | 89.720 | 90.280 | 120.203 | 1291.944 | N/A | N/A | |
Sr2MgSi2O7 | Calc. | 8.0962 | 8.0962 | 5.2249 | 90 | 90 | 90 | 342.478 | 3.5660 | 56.58 |
Expt. | 8.0107 | 8.0107 | 5.1636 | 90 | 90 | 90 | 331.355 | N/A | N/A | |
Sr2ZnSi2O7 | Calc. | 8.0954 | 8.0954 | 5.2322 | 90 | 90 | 90 | 342.897 | 3.9593 | 57.16 |
Expt. | 8.0007 | 8.0007 | 5.1722 | 90 | 90 | 90 | 331.079 | N/A | N/A | |
SrSiO3 | Calc. | 12.4873 | 7.2366 | 10.9917 | 90 | 111.645 | 90 | 923.231 | 3.5335 | 58.61 |
Expt. | 12.3330 | 7.1460 | 10.8850 | 90 | 111.570 | 90 | 892.131 | N/A | N/A | |
Zn2SiO4 | Calc. | 14.1481 | 14.1481 | 9.4163 | 90 | 90 | 120 | 1632.331 | 4.0803 | 63.23 |
Expt. | 13.9710 | 13.9710 | 9.3340 | 90 | 90 | 120 | 1577.805 | N/A | N/A | |
Li2Ca2Si2O7 | Calc. | 5.1459 | 5.1459 | 41.6617 | 90 | 90 | 120 | 955.403 | 2.7346 | 57.34 |
Expt. | 5.1471 | 5.1471 | 41.6291 | 90 | 90 | 120 | 955.116 | N/A | N/A |
Table S1 Structural properties of silicate bioceramics
Bioceramic | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | Cell volume/Å3 | Density/ (g·cm-3) | Void space/% | |
---|---|---|---|---|---|---|---|---|---|---|
α-CaSiO3 | Calc. | 11.9532 | 6.9367 | 10.6153 | 90 | 111.274 | 90 | 820.198 | 2.8224 | 58.32 |
Expt. | 11.8322 | 6.8624 | 10.5297 | 90 | 111.245 | 90 | 796.878 | N/A | N/A | |
β-CaSiO3 | Calc. | 8.0250 | 7.3910 | 7.1500 | 90.083 | 95.531 | 103.437 | 410.433 | 2.8201 | 58.03 |
Expt. | 7.9400 | 7.3200 | 7.0700 | 90.030 | 95.370 | 103.430 | 397.818 | N/A | N/A | |
Ca2SiO4 | Calc. | 5.1234 | 11.3455 | 6.8071 | 90 | 90 | 90 | 395.748 | 2.8910 | 57.19 |
Expt. | 5.0910 | 11.3710 | 6.7820 | 90 | 90 | 90 | 392.608 | N/A | N/A | |
Ca3SiO5 | Calc. | 11.7501 | 14.3209 | 13.7622 | 104.813 | 94.354 | 90.117 | 2231.821 | 3.0580 | 54.91 |
Expt. | 11.6700 | 14.2400 | 13.7200 | 105.500 | 94.330 | 90 | 2190.324 | N/A | N/A | |
Ca2MgSi2O7 | Calc. | 7.9073 | 7.9073 | 5.053 | 90 | 90 | 90 | 315.940 | 2.8661 | 57.30 |
Expt. | 7.8900 | 7.8900 | 5.0410 | 90 | 90 | 90 | 313.813 | N/A | N/A | |
Ca2ZnSi2O7 | Calc. | 7.9043 | 7.9043 | 5.0592 | 90 | 90 | 90 | 316.089 | 3.2961 | 57.87 |
Expt. | 7.8279 | 7.8279 | 5.0138 | 90 | 90 | 90 | 307.226 | N/A | N/A | |
Ca3MgSi2O8 | Calc. | 9.8453 | 5.2925 | 13.7871 | 90 | 97.954 | 90 | 711.477 | 3.0690 | 54.41 |
Expt. | 9.9678 | 5.2693 | 13.6701 | 90 | 97.720 | 90 | 711.498 | N/A | N/A | |
Ca3ZrSi2O9 | Calc. | 7.4323 | 10.3145 | 10.5148 | 90 | 91.113 | 90 | 805.919 | 3.3927 | 56.03 |
Expt. | 7.3603 | 10.1766 | 10.4514 | 90 | 90.875 | 90 | 782.748 | N/A | N/A | |
CaMgSi2O6 | Calc. | 9.8690 | 9.0131 | 5.3152 | 90 | 106.122 | 90 | 454.197 | 3.1672 | 52.58 |
Expt. | 9.7760 | 8.9790 | 5.2670 | 90 | 105.940 | 90 | 444.554 | N/A | N/A | |
CaMgSiO4 | Calc. | 5.2260 | 6.8631 | 9.1738 | 90 | 90 | 90 | 327.740 | 3.1714 | 52.65 |
Expt. | 5.2408 | 6.8696 | 9.1348 | 90 | 90 | 90 | 328.869 | N/A | N/A | |
CaTiSiO5 | Calc. | 7.1294 | 8.7726 | 6.6609 | 90 | 114.041 | 90 | 380.457 | 3.4231 | 53.08 |
Expt. | 7.0730 | 8.7180 | 6.5550 | 90 | 113.970 | 90 | 369.339 | N/A | N/A | |
Ca2Al2SiO7 | Calc. | 7.6773 | 7.6773 | 5.1888 | 90 | 90 | 90 | 305.833 | 2.9777 | 56.92 |
Expt. | 7.6764 | 7.6764 | 5.1908 | 90 | 90 | 90 | 305.878 | N/A | N/A | |
Ca5(PO4)2SiO4 | Calc. | 6.8737 | 10.2116 | 15.4913 | 90 | 90 | 90 | 1087.357 | 2.9470 | 55.64 |
Expt. | 6.7370 | 10.1320 | 15.5080 | 90 | 90 | 90 | 1058.565 | N/A | N/A | |
Mg2SiO4 | Calc. | 4.8043 | 10.3245 | 6.0475 | 90 | 90 | 90 | 299.970 | 3.1157 | 52.95 |
Expt. | 4.7630 | 10.2400 | 5.9990 | 90 | 90 | 90 | 292.590 | N/A | N/A | |
MgSiO3 | Calc. | 9.3655 | 8.8559 | 5.3797 | 90 | 90 | 90 | 446.190 | 2.9892 | 54.83 |
Expt. | 9.2500 | 8.7400 | 5.3200 | 90 | 90 | 90 | 430.095 | N/A | N/A | |
Na2CaSiO4 | Calc. | 7.5297 | 7.5297 | 7.5297 | 90 | 90 | 90 | 426.904 | 2.7719 | 53.91 |
Expt. | 7.4800 | 7.4800 | 7.4800 | 90 | 90 | 90 | 418.509 | N/A | N/A | |
Na2Ca2Si3O9 | Calc. | 10.6053 | 10.6053 | 13.3064 | 89.839 | 90.161 | 120.224 | 1293.145 | 2.7306 | 58.66 |
Expt. | 10.5989 | 10.5989 | 13.3074 | 89.720 | 90.280 | 120.203 | 1291.944 | N/A | N/A | |
Sr2MgSi2O7 | Calc. | 8.0962 | 8.0962 | 5.2249 | 90 | 90 | 90 | 342.478 | 3.5660 | 56.58 |
Expt. | 8.0107 | 8.0107 | 5.1636 | 90 | 90 | 90 | 331.355 | N/A | N/A | |
Sr2ZnSi2O7 | Calc. | 8.0954 | 8.0954 | 5.2322 | 90 | 90 | 90 | 342.897 | 3.9593 | 57.16 |
Expt. | 8.0007 | 8.0007 | 5.1722 | 90 | 90 | 90 | 331.079 | N/A | N/A | |
SrSiO3 | Calc. | 12.4873 | 7.2366 | 10.9917 | 90 | 111.645 | 90 | 923.231 | 3.5335 | 58.61 |
Expt. | 12.3330 | 7.1460 | 10.8850 | 90 | 111.570 | 90 | 892.131 | N/A | N/A | |
Zn2SiO4 | Calc. | 14.1481 | 14.1481 | 9.4163 | 90 | 90 | 120 | 1632.331 | 4.0803 | 63.23 |
Expt. | 13.9710 | 13.9710 | 9.3340 | 90 | 90 | 120 | 1577.805 | N/A | N/A | |
Li2Ca2Si2O7 | Calc. | 5.1459 | 5.1459 | 41.6617 | 90 | 90 | 120 | 955.403 | 2.7346 | 57.34 |
Expt. | 5.1471 | 5.1471 | 41.6291 | 90 | 90 | 120 | 955.116 | N/A | N/A |
Bioceramic | Surrounding aqueous media | Weight loss | Total ion release in media after 7 d |
---|---|---|---|
α-CaSiO3 | SBF | 31.27% (28 d) | N/A |
SBF | 16.58% (28 d) | Ca: ~3.58 mmol·L-1/Si: ~0.67 mmol·L-1 | |
β-CaSiO3 | Tris-HCl | 24.8% (28 d) | N/A |
SBF | N/A | Ca: ~9.59 mmol·L-1/Si: ~1.73 mmol·L-1 | |
Ca2SiO4 | SBF | N/A | Ca: ~4.77 mmol·L-1/Si: ~0.83 mmol·L-1 |
Ca3SiO5 | SBF | N/A | Ca: ~6.82 mmol·L-1/Si: ~2.20 mmol·L-1 |
Ca2MgSi2O7 | Tris-HCl | 12.1% (28 d) | (2 d) Ca: ~13.51 mmol·L-1/Si: ~0.26 mmol·L-1/Mg: ~3.49 mmol·L-1 |
SBF | N/A | Ca: ~4.50 mmol·L-1/Si: ~2.18 mmol·L-1/Mg: ~2.15 mmol·L-1 | |
SBF | N/A | Ca: ~2.38 mmol·L-1/Si: ~0.91 mmol·L-1/Mg: ~1.23 mmol·L-1 | |
Ca2ZnSi2O7 | Tris-HCl | 8.4% (28 d) | (2 d) Ca: ~11.10 mmol·L-1/Si: ~0.17 mmol·L-1/Zn: ~0.06 mmol·L-1 |
Tris-HCl | N/A | Ca: ~2.68 mmol·L-1/Si: ~0.47 mmol·L-1/Zn: ~0.01 mmol·L-1 | |
Tris-HCl | 3.17% (28 d) | Ca: ~0.55 mmol·L-1/Si: ~0.17 mmol·L-1/Zn: ~0.02 mmol·L-1 | |
Ca3MgSi2O8 | Tris-HCl | 3.05% (7 d) | N/A |
Ca3ZrSi2O9 | SBF | N/A | Ca: ~2.55 mmol·L-1/Si: ~1.52 mmol·L-1/Zr: ~0.43 mmol·L-1 |
SBF | N/A | Ca: ~9.15 mmol·L-1/Si: ~1.55 mmol·L-1 | |
CaMgSi2O6 | SBF | N/A | Ca: ~3.87 mmol·L-1/Si: ~1.95 mmol·L-1/Mg: ~2.01 mmol·L-1 |
SBF | N/A | Ca: ~1.75 mmol·L-1/Si: ~1.11 mmol·L-1/Mg: ~0.85 mmol·L-1 | |
CaMgSiO4 | SBF | N/A | Ca: ~7.00 mmol·L-1/Si: ~2.64 mmol·L-1/Mg: ~3.29 mmol·L-1 |
SBF | 2.07% (7 d) 3.51% (14 d) 6.92% (28 d) | (2 d) Ca: ~13.17 mmol·L-1/Si: ~0.06 mmol·L-1/Mg: ~4.33 mmol·L-1 | |
CaTiSiO5 | Tris-HCl | N/A | Ca: ~0.23 mmol·L-1/Si: ~0.05 mmol·L-1 |
Ca2Al2SiO7 | SBF | N/A | Ca: ~2.64 mmol·L-1/Si: ~0.21 mmol·L-1/Al: ~0.12 mmol·L-1 |
Ca5(PO4)2SiO4 | SBF | N/A | Ca: ~7.10 mmol·L-1/Si: ~3.88 mmol·L-1/P: ~1.58 mmol·L-1 |
Mg2SiO4 | SBF | N/A | Ca: ~1.52 mmol·L-1/Mg: ~2.78 mmol·L-1 |
PBS | 0.11% (28 d) | N/A | |
MgSiO3 | Tris-HCl | 7.31% (7 d) 10.77% (14 d) | N/A |
Na2CaSiO4 | PBS / SBF | 2.49% (7 d) 2.86% (14 d) 1.72% (28 d) | Ca: ~5.68 mmol·L-1/Si: ~0.46 mmol·L-1 |
Na2Ca2Si3O9 | Tris-HCl | 4.32% (7 d) | N/A |
SBF | N/A | Ca: ~4.98/Si: ~0.87/Na: 172.57 (×10-6 mmol·L-1) | |
Sr2MgSi2O7 | N/A | N/A | (14 d) Sr: ~1.70 mmol·L-1/Si: ~2.24 mmol·L-1 / Mg: ~1.97 mmol·L-1 |
Sr2ZnSi2O7 | N/A | N/A | (14 d) Sr: ~1.71 mmol·L-1/Si: ~0.97 mmol·L-1 / Zn: ~0.024 mmol·L-1 |
Tris-HCl | 1.19% (7 d) 1.70% (14 d) 2.26% (28 d) | N/A | |
SrSiO3 | SBF | N/A | Sr: ~8.27 mmol·L-1/Si: ~2.35 mmol·L-1 |
Zn2SiO4 | N/A | N/A | Zn: ~0.012 mmol·L-1/Si: ~0.015 mmol·L-1 |
Li2Ca2Si2O7 | SBF | N/A | Ca: ~3.12 mmol·L-1/Si: ~2.33 mmol·L-1/Li: ~0.82 mmol·L-1 |
Table S2 Summary of degradation studies for silicate bioceramics
Bioceramic | Surrounding aqueous media | Weight loss | Total ion release in media after 7 d |
---|---|---|---|
α-CaSiO3 | SBF | 31.27% (28 d) | N/A |
SBF | 16.58% (28 d) | Ca: ~3.58 mmol·L-1/Si: ~0.67 mmol·L-1 | |
β-CaSiO3 | Tris-HCl | 24.8% (28 d) | N/A |
SBF | N/A | Ca: ~9.59 mmol·L-1/Si: ~1.73 mmol·L-1 | |
Ca2SiO4 | SBF | N/A | Ca: ~4.77 mmol·L-1/Si: ~0.83 mmol·L-1 |
Ca3SiO5 | SBF | N/A | Ca: ~6.82 mmol·L-1/Si: ~2.20 mmol·L-1 |
Ca2MgSi2O7 | Tris-HCl | 12.1% (28 d) | (2 d) Ca: ~13.51 mmol·L-1/Si: ~0.26 mmol·L-1/Mg: ~3.49 mmol·L-1 |
SBF | N/A | Ca: ~4.50 mmol·L-1/Si: ~2.18 mmol·L-1/Mg: ~2.15 mmol·L-1 | |
SBF | N/A | Ca: ~2.38 mmol·L-1/Si: ~0.91 mmol·L-1/Mg: ~1.23 mmol·L-1 | |
Ca2ZnSi2O7 | Tris-HCl | 8.4% (28 d) | (2 d) Ca: ~11.10 mmol·L-1/Si: ~0.17 mmol·L-1/Zn: ~0.06 mmol·L-1 |
Tris-HCl | N/A | Ca: ~2.68 mmol·L-1/Si: ~0.47 mmol·L-1/Zn: ~0.01 mmol·L-1 | |
Tris-HCl | 3.17% (28 d) | Ca: ~0.55 mmol·L-1/Si: ~0.17 mmol·L-1/Zn: ~0.02 mmol·L-1 | |
Ca3MgSi2O8 | Tris-HCl | 3.05% (7 d) | N/A |
Ca3ZrSi2O9 | SBF | N/A | Ca: ~2.55 mmol·L-1/Si: ~1.52 mmol·L-1/Zr: ~0.43 mmol·L-1 |
SBF | N/A | Ca: ~9.15 mmol·L-1/Si: ~1.55 mmol·L-1 | |
CaMgSi2O6 | SBF | N/A | Ca: ~3.87 mmol·L-1/Si: ~1.95 mmol·L-1/Mg: ~2.01 mmol·L-1 |
SBF | N/A | Ca: ~1.75 mmol·L-1/Si: ~1.11 mmol·L-1/Mg: ~0.85 mmol·L-1 | |
CaMgSiO4 | SBF | N/A | Ca: ~7.00 mmol·L-1/Si: ~2.64 mmol·L-1/Mg: ~3.29 mmol·L-1 |
SBF | 2.07% (7 d) 3.51% (14 d) 6.92% (28 d) | (2 d) Ca: ~13.17 mmol·L-1/Si: ~0.06 mmol·L-1/Mg: ~4.33 mmol·L-1 | |
CaTiSiO5 | Tris-HCl | N/A | Ca: ~0.23 mmol·L-1/Si: ~0.05 mmol·L-1 |
Ca2Al2SiO7 | SBF | N/A | Ca: ~2.64 mmol·L-1/Si: ~0.21 mmol·L-1/Al: ~0.12 mmol·L-1 |
Ca5(PO4)2SiO4 | SBF | N/A | Ca: ~7.10 mmol·L-1/Si: ~3.88 mmol·L-1/P: ~1.58 mmol·L-1 |
Mg2SiO4 | SBF | N/A | Ca: ~1.52 mmol·L-1/Mg: ~2.78 mmol·L-1 |
PBS | 0.11% (28 d) | N/A | |
MgSiO3 | Tris-HCl | 7.31% (7 d) 10.77% (14 d) | N/A |
Na2CaSiO4 | PBS / SBF | 2.49% (7 d) 2.86% (14 d) 1.72% (28 d) | Ca: ~5.68 mmol·L-1/Si: ~0.46 mmol·L-1 |
Na2Ca2Si3O9 | Tris-HCl | 4.32% (7 d) | N/A |
SBF | N/A | Ca: ~4.98/Si: ~0.87/Na: 172.57 (×10-6 mmol·L-1) | |
Sr2MgSi2O7 | N/A | N/A | (14 d) Sr: ~1.70 mmol·L-1/Si: ~2.24 mmol·L-1 / Mg: ~1.97 mmol·L-1 |
Sr2ZnSi2O7 | N/A | N/A | (14 d) Sr: ~1.71 mmol·L-1/Si: ~0.97 mmol·L-1 / Zn: ~0.024 mmol·L-1 |
Tris-HCl | 1.19% (7 d) 1.70% (14 d) 2.26% (28 d) | N/A | |
SrSiO3 | SBF | N/A | Sr: ~8.27 mmol·L-1/Si: ~2.35 mmol·L-1 |
Zn2SiO4 | N/A | N/A | Zn: ~0.012 mmol·L-1/Si: ~0.015 mmol·L-1 |
Li2Ca2Si2O7 | SBF | N/A | Ca: ~3.12 mmol·L-1/Si: ~2.33 mmol·L-1/Li: ~0.82 mmol·L-1 |
Ca (Mg)/P molar ratio | Compounds and their typical abbreviations | Chemical formula | Solubility at 25 ℃ in SBF/(g·L-1) |
---|---|---|---|
1.0 | Dicalcium phosphate anhydrous (DCPA or DCP), mineral monetite | CaHPO4 | ~0.048 |
1.33 | Octacalcium phosphate (OCP) | Ca8(HPO4)2(PO4)4·5H2O | ~0.0081 |
1.5 | α-Tricalcium phosphate(α-TCP) | α-Ca3(PO4)2 | ~0.0025 |
1.5 | β-Tricalcium phosphate(β-TCP) | β-Ca3(PO4)2 | ~0.0005 |
1.67 | Hydroxyapatite (HA or HAP) | Ca10(PO4)6(OH)2 | ~0.0003 |
1.67 | Fluorapatite (FA or FAP) | Ca10(PO4)6F2 | ~0.0002 |
1.67 | Oxyapatite (OA、OAP or OXA), mineral voelckerite | Ca10(PO4)6O | ~0.087 |
1.5 | Farringtonite | Mg3(PO4)2 | ~0.00215 |
1.5 | Bobierrite | Mg3(PO4)2·8H2O | ~0.0062 |
1.5 | Cattiite | Mg3(PO4)2·22H2O | ~0.00146 |
Table S3 Summary of degradation studies for phosphate bioceramics
Ca (Mg)/P molar ratio | Compounds and their typical abbreviations | Chemical formula | Solubility at 25 ℃ in SBF/(g·L-1) |
---|---|---|---|
1.0 | Dicalcium phosphate anhydrous (DCPA or DCP), mineral monetite | CaHPO4 | ~0.048 |
1.33 | Octacalcium phosphate (OCP) | Ca8(HPO4)2(PO4)4·5H2O | ~0.0081 |
1.5 | α-Tricalcium phosphate(α-TCP) | α-Ca3(PO4)2 | ~0.0025 |
1.5 | β-Tricalcium phosphate(β-TCP) | β-Ca3(PO4)2 | ~0.0005 |
1.67 | Hydroxyapatite (HA or HAP) | Ca10(PO4)6(OH)2 | ~0.0003 |
1.67 | Fluorapatite (FA or FAP) | Ca10(PO4)6F2 | ~0.0002 |
1.67 | Oxyapatite (OA、OAP or OXA), mineral voelckerite | Ca10(PO4)6O | ~0.087 |
1.5 | Farringtonite | Mg3(PO4)2 | ~0.00215 |
1.5 | Bobierrite | Mg3(PO4)2·8H2O | ~0.0062 |
1.5 | Cattiite | Mg3(PO4)2·22H2O | ~0.00146 |
Bioceramic | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | Cell volume/Å3 | Density/ (g·cm-3) | Void space/% | |
---|---|---|---|---|---|---|---|---|---|---|
DCP | Calc. | 6.7222 | 6.9771 | 7.1003 | 75.727 | 83.353 | 88.127 | 320.567 | 2.8192 | 55.11 |
Expt. | 6.7205 | 6.9810 | 7.0970 | 75.716 | 83.359 | 88.176 | 320.503 | N/A | N/A | |
OCP | Calc. | 20.0539 | 9.6632 | 6.9266 | 90.376 | 93.188 | 110.180 | 1257.459 | 2.5951 | 58.04 |
Expt. | 19.6920 | 9.5230 | 6.8350 | 90.150 | 92.540 | 108.650 | 1213.058 | N/A | N/A | |
α-TCP | Calc. | 5.2650 | 5.2650 | 7.2297 | 89.964 | 90.036 | 64.657 | 181.125 | 2.8437 | 57.68 |
Expt. | 5.2719 | 5.2719 | 7.2338 | 89.713 | 90.287 | 64.441 | 181.367 | N/A | N/A | |
β-TCP | Calc. | 14.1827 | 14.1827 | 14.1827 | 43.823 | 43.823 | 43.823 | 1241.876 | 2.9033 | 75.04 |
Expt. | 14.4070 | 14.4070 | 14.4070 | 43.443 | 43.443 | 43.443 | 1282.726 | N/A | N/A | |
HAP | Calc. | 9.5609 | 9.5609 | 6.9081 | 90 | 90 | 120 | 546.872 | 3.0505 | 55.17 |
Expt. | 9.4240 | 9.4240 | 6.8790 | 90 | 90 | 120 | 529.086 | N/A | N/A | |
FAP | Calc. | 9.5015 | 9.5015 | 6.9174 | 90 | 90 | 120 | 540.833 | 3.0968 | 54.78 |
Expt. | 9.3770 | 9.3770 | 6.8880 | 90 | 90 | 120 | 524.507 | N/A | N/A | |
OAP | Calc. | 9.6140 | 9.6140 | 6.8905 | 90 | 90 | 120 | 551.555 | 2.9704 | 56.88 |
Expt. | 9.4320 | 9.4320 | 6.8810 | 90 | 90 | 120 | 530.139 | N/A | N/A | |
Mg3(PO4)2 | Calc. | 5.1226 | 8.3405 | 8.9544 | 90 | 120.550 | 90 | 329.469 | 2.6498 | 60.83 |
Expt. | 5.1224 | 8.3404 | 8.9544 | 90 | 120.549 | 90 | 329.456 | N/A | N/A | |
Mg3(PO4)2·8H2O | Calc. | 8.4348 | 8.4348 | 4.6912 | 80.689 | 99.311 | 74.357 | 309.660 | 2.1825 | 59.26 |
Expt. | 8.4235 | 8.4235 | 4.6942 | 80.788 | 99.212 | 74.232 | 309.059 | N/A | N/A | |
Mg3(PO4)2·22H2O | Calc. | 6.8362 | 7.0170 | 15.8842 | 87.185 | 94.670 | 118.362 | 668.225 | 1.6382 | 66.59 |
Expt. | 6.9265 | 7.0204 | 15.9613 | 88.374 | 94.305 | 119.386 | 674.334 | N/A | N/A |
Table S4 Structural properties of phosphate bioceramics
Bioceramic | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | Cell volume/Å3 | Density/ (g·cm-3) | Void space/% | |
---|---|---|---|---|---|---|---|---|---|---|
DCP | Calc. | 6.7222 | 6.9771 | 7.1003 | 75.727 | 83.353 | 88.127 | 320.567 | 2.8192 | 55.11 |
Expt. | 6.7205 | 6.9810 | 7.0970 | 75.716 | 83.359 | 88.176 | 320.503 | N/A | N/A | |
OCP | Calc. | 20.0539 | 9.6632 | 6.9266 | 90.376 | 93.188 | 110.180 | 1257.459 | 2.5951 | 58.04 |
Expt. | 19.6920 | 9.5230 | 6.8350 | 90.150 | 92.540 | 108.650 | 1213.058 | N/A | N/A | |
α-TCP | Calc. | 5.2650 | 5.2650 | 7.2297 | 89.964 | 90.036 | 64.657 | 181.125 | 2.8437 | 57.68 |
Expt. | 5.2719 | 5.2719 | 7.2338 | 89.713 | 90.287 | 64.441 | 181.367 | N/A | N/A | |
β-TCP | Calc. | 14.1827 | 14.1827 | 14.1827 | 43.823 | 43.823 | 43.823 | 1241.876 | 2.9033 | 75.04 |
Expt. | 14.4070 | 14.4070 | 14.4070 | 43.443 | 43.443 | 43.443 | 1282.726 | N/A | N/A | |
HAP | Calc. | 9.5609 | 9.5609 | 6.9081 | 90 | 90 | 120 | 546.872 | 3.0505 | 55.17 |
Expt. | 9.4240 | 9.4240 | 6.8790 | 90 | 90 | 120 | 529.086 | N/A | N/A | |
FAP | Calc. | 9.5015 | 9.5015 | 6.9174 | 90 | 90 | 120 | 540.833 | 3.0968 | 54.78 |
Expt. | 9.3770 | 9.3770 | 6.8880 | 90 | 90 | 120 | 524.507 | N/A | N/A | |
OAP | Calc. | 9.6140 | 9.6140 | 6.8905 | 90 | 90 | 120 | 551.555 | 2.9704 | 56.88 |
Expt. | 9.4320 | 9.4320 | 6.8810 | 90 | 90 | 120 | 530.139 | N/A | N/A | |
Mg3(PO4)2 | Calc. | 5.1226 | 8.3405 | 8.9544 | 90 | 120.550 | 90 | 329.469 | 2.6498 | 60.83 |
Expt. | 5.1224 | 8.3404 | 8.9544 | 90 | 120.549 | 90 | 329.456 | N/A | N/A | |
Mg3(PO4)2·8H2O | Calc. | 8.4348 | 8.4348 | 4.6912 | 80.689 | 99.311 | 74.357 | 309.660 | 2.1825 | 59.26 |
Expt. | 8.4235 | 8.4235 | 4.6942 | 80.788 | 99.212 | 74.232 | 309.059 | N/A | N/A | |
Mg3(PO4)2·22H2O | Calc. | 6.8362 | 7.0170 | 15.8842 | 87.185 | 94.670 | 118.362 | 668.225 | 1.6382 | 66.59 |
Expt. | 6.9265 | 7.0204 | 15.9613 | 88.374 | 94.305 | 119.386 | 674.334 | N/A | N/A |
[1] | WU C T, CHANG J. A review of bioactive silicate ceramics. Biomedical Materials, 2013, 8(3): 12. |
[2] | KANG Z R, YU B, FU S Y, et al. Three-dimensional printing of CaTiO3 incorporated porous β-Ca2SO4 composite scaffolds for bone regeneration. Applied Materials Today, 2019, 16: 132. |
[3] | MOHAN N, PALANGADAN R, FERNANDEZ F B, et al. Preparation of hydroxyapatite porous scaffold from a ‘coral-like’ synthetic inorganic precursor for use as a bone substitute and a drug delivery vehicle. Materials Science and Engineering: C, 2018, 92: 329. |
[4] | MEISSNER R, BERTOL L, REHMAN M A U, et al. Bioprinted 3D calcium phosphate scaffolds with gentamicin releasing capability. Ceramics International, 2019, 45(6): 7090. |
[5] | ERASMUS E P, SULE R, JOHNSON O T, et al. In vitro evaluation of porous borosilicate, borophosphate and phosphate bioactive glasses scaffolds fabricated using foaming agent for bone regeneration. Scientific Reports, 2018, 8: 13. |
[6] | SRINATH P, AZEEM P A, REDDY K V. Review on calcium silicate-based bioceramics in bone tissue engineering. International Journal of Applied Ceramic Technology, 2020, 17(5): 2450. |
[7] | JODATI H, YILMAZ B, EVIS Z. Calcium zirconium silicate (baghdadite) ceramic as a biomaterial. Ceramics International, 2020, 46(14): 21902. |
[8] | RIBAS R G, SCHATKOSKI V M, MONTANHEIRO T L D, et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review. Ceramics International, 2019, 45(17): 21051. |
[9] | SCHATKOSKI V M, MONTANHEIRO T L D, DE MENEZES B R C, et al. Current advances concerning the most cited metal ions doped bioceramics and silicate-based bioactive glasses for bone tissue engineering. Ceramics International, 2021, 47(3): 2999. |
[10] | WU C, CHANG J. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 83B(1): 153. |
[11] | SUN H L, WU C T, DAI K R, et al. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials, 2006, 27(33): 5651. |
[12] | MA J, WANG C Z, HUANG B X, et al. In vitro degradation and apatite formation of magnesium and zinc incorporated calcium silicate prepared by Sol-Gel method. Materials Technology, 2021, 36(7): 420. |
[13] | CHEN Y W, HO C C, HUANG T H, et al. The ionic products from mineral trioxide aggregate-induced odontogenic differentiation of dental pulp cells via activation of the Wnt/β-catenin signaling pathway. Journal of Endodontics, 2016, 42(7): 1062. |
[14] | SADEGHZADE S, EMADI R, TAVANGARIAN F. Combustion assisted synthesis of hardystonite nanopowder. Ceramics International, 2016, 42(13): 14656. |
[15] | SHIE M Y, CHIANG W H, CHEN I W P, et al. Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate-graphene composites. Materials Science and Engineering: C, 2017, 73: 726. |
[16] | DU Z Y, LENG H J, GUO L Y, et al. Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Composites Part B-Engineering, 2020, 190: 15. |
[17] | VENKATRAMAN S K, SWAMIAPPAN S. Synthesis, bioactivity and mechanical stability of Mg/Ca silicate biocomposites developed for tissue engineering applications. ChemistrySelect, 2019, 4(45): 13099. |
[18] | ZHU T L, ZHU M, ZHU Y F. Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceramics International, 2020, 46(9): 13607. |
[19] | LIAO F, PENG X Y, YANG F, et al. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability. Materials Science and Engineering: C, 2019, 104: 11. |
[20] | SU Y H, PAN C T, TSENG Y S, et al. Rare earth element cerium substituted Ca-Si-Mg system bioceramics: from mechanism to mechanical and degradation properties. Ceramics International, 2021, 47(14): 19414. |
[21] | KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169. |
[22] | BLOCHL P E. Projector augmented-wave method. Physical Review B, 1994, 50(24): 17953. |
[23] | BLOCHL P E, JEPSEN O, ANDERSEN O K. Improved tetrahederon method for brillouin-zone integrations. Physical Review B, 1994, 49(23): 16223-16233. |
[24] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1997, 78(7): 1396. |
[25] | MONKHORST H J, PACK J D. Special points for brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188. |
[26] | MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, 44: 1272. |
[27] | REGI M V, ESBRIT P, SALINAS A J. Degradative effects of the biological environment on ceramic biomaterials. Biomaterials Science (Fourth Edition), 2020: 955. |
[28] | ZHANG M, ZHAI W, CHANG J. Preparation and characterization of a novel willemite bioceramic. Journal of Materials Science- Materials in Medicine, 2010, 21(4): 1169. |
[29] | DEKOCK R L. Proton affinity and frontier orbital concept- predictions and pitfalls. Journal of the American Chemical Society, 1975, 97(19): 5592. |
[30] | DEKOCK R L, BARBACHYN M R. Proton affinity, ionization- energy, and the nature of frontier orbital electron-density. Journal of the American Chemical Society, 1979, 101(22): 6516. |
[31] | HUANG J, WANG B, YU Y, et al. Electronic origin of doping- induced enhancements of reactivity: case study of tricalcium silicate. Journal of Physical Chemistry C, 2015, 119(46): 25991. |
[32] | WU C T, CHANG J. Silicate bioceramics for bone tissue regeneration. Journal of Inorganic Materials, 2013, 28(1): 29. |
[33] | WU C T, RAMASWAMY Y, BOUGHTON P, et al. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification. Acta Biomaterialia, 2008, 4(2): 343. |
[34] | WANG G C, LU Z F, DWARTE D, et al. Porous scaffolds with tailored reactivity modulate in-vitro osteoblast responses. Materials Science and Engineering: C, 2012, 32(7): 1818. |
[35] | RAMASWAMY Y, WU C, VAN HUMMEL A, et al. The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials, 2008, 29(33): 4392. |
[36] | GOU Z G, CHANG J, ZHAI W Y, et al. Study on the self-setting property and the in vitro bioactivity of β-Ca2SiO4. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 73B(2): 244. |
[37] | ZHAO W Y, WANG J Y, ZHAI W Y, et al. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials, 2005, 26(31): 6113. |
[38] | NAJAFINEZHAD A, ABDELLAHI M, GHAYOUR H, et al. A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics. Materials Science and Engineering: C, 2017, 72: 259. |
[39] | WANG G C, LU Z F, LIU X Y, et al. Nanostructured glass-ceramic coatings for orthopaedic applications. Journal of the Royal Society Interface, 2011, 8(61): 1192. |
[40] | LI H C, WANG D G, CHEN C Z. Effect of sodium oxide and magnesia on structure, in vitro bioactivity and degradability of wollastonite. Materials Letters, 2014, 135: 237. |
[41] | KALANTARI E, NAGHIB S M, NAIMI-JAMAL M R, et al. Nanostructured monticellite for tissue engineering applications -- Part I: microstructural and physicochemical characteristics. Ceramics International, 2018, 44(11): 12731. |
[42] | MA J, HUANG B X, ZHAO X C, et al. In vitro degradability and apatite-formation ability of monticellite (CaMgSiO4) bioceramic. Ceramics International, 2019, 45(3): 3754. |
[43] | RAFIENIA M, BIGHAM A, SAUDI A, et al. Gehlenite nanobioceramic: Sol-Gel synthesis, characterization, and in vitro assessment of its bioactivity. Materials Letters, 2018, 225: 89. |
[44] | LU W H, DUAN W, GUO Y P, et al. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic. Journal of Biomaterials Applications, 2012, 26(6): 637. |
[45] | TAVANGARIAN F, EMADI R. Nanostructure effects on the bioactivity of forsterite bioceramic. Materials Letters, 2011, 65(4): 740. |
[46] | SUN H, HE S W, WU P, et al. A novel MgO-CaO-SiO2 system for fabricating bone scaffolds with improved overall performance. Materials, 2016, 9(4): 12. |
[47] | JIN X G, CHANG J A, ZHAI W Y, et al. Preparation and characterization of clinoenstatite bioceramics. Journal of the American Ceramic Society, 2011, 94(1): 173. |
[48] | ZHAO Y K, NING C Q, CHANG J. Sol-Gel synthesis of Na2CaSiO4 and its in vitro biological behaviors. Journal of Sol-Gel Science and Technology, 2009, 52(1): 69. |
[49] | DU R L, CHANG J. Preparation and characterization of bioactive sol-gel-derived Na2Ca2Si3O9. Journal of Materials Science-Materials in Medicine, 2004, 15(12): 1285. |
[50] | ZHANG M L, WU C T, LIN K L, et al. Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si (M = Zn, Mg) silicate bioceramics. Journal of Biomedical Materials Research Part A, 2012, 100A(11): 2979. |
[51] | ZHANG M L, LIN K L, CHANG J. Preparation and characterization of Sr-hardystonite (Sr2ZnSi2O7) for bone repair applications. Materials Science and Engineering: C, 2012, 32(2): 184. |
[52] | ZHANG M L, ZHAI W Y, LIN K L, et al. Synthesis, in vitro hydroxyapatite forming ability, and cytocompatibility of strontium silicate powders. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 93B(1): 252. |
[53] | ZHANG M L, ZHAI W Y, CHANG J. Preparation and characterization of a novel willemite bioceramic. Journal of Materials Science-Materials in Medicine, 2010, 21(4): 1169. |
[54] | XU H Y, ZHAI D, CAO W T, et al. Mineralization activity of Li2Ca2Si2O7 bioceramics. Journal of Inorganic Materials, 2021, 36(7): 753. |
[55] | WANG X, CHANG J. Application of bioceramics in tissue engineering. Chinese Bulletin of Life Sciences, 2020, 32(3): 257. |
[56] | KUCKO N W, HERBER R P, LEEUWENBURGH S C G, et al. Calcium phosphate bioceramics and cements. //ANTHONY A, ROBERT L, TONY M, ROBERT N, et al. Principles of Regenerative Medicine (Third Edition). New York: Academic Press, 2019: 591. |
[57] | DOROZHKIN S V. Calcium orthophosphate bioceramics. Ceramics International, 2015, 41(10): 13913. |
[58] | HABIBOVIC P, BASSETT D C, DOILLON C J, et al. Collagen biomineralization in vivo by sustained release of inorganic phosphate ions. Advanced Materials, 2010, 22(16): 1858. |
[59] |
MA H, FENG C, CHANG J, et al. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomaterialia, 2018, 79: 37.
DOI PMID |
[60] | NABIYOUNI M, BRÜCKNER T, ZHOU H, et al. Magnesium- based bioceramics in orthopedic applications. Acta Biomaterialia, 2018, 66: 23. |
[1] | LI Liuyuan, HUANG Kaiming, ZHAO Xiuyi, LIU Huichao, WANG Chao. Influence of RE-Si-Al-O Glass Phase on Microstructure and CMAS Corrosion Resistance of High Entropy Rare Earth Disilicates [J]. Journal of Inorganic Materials, 2024, 39(7): 793-802. |
[2] | YUE Zihao, YANG Xiaotu, ZHANG Zhengliang, DENG Ruixiang, ZHANG Tao, SONG Lixin. Effect of Pb2+ on the Luminescent Performance of Borosilicate Glass Coated CsPbBr3 Perovskite Quantum Dots [J]. Journal of Inorganic Materials, 2024, 39(4): 449-456. |
[3] | YE Maosen, WANG Yao, XU Bing, WANG Kangkang, ZHANG Shengnan, FENG Jianqing. II/Z-type Bi2MoO6/Ag2O/Bi2O3 Heterojunction for Photocatalytic Degradation of Tetracycline under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2024, 39(3): 321-329. |
[4] | CAI Mengyu, LI-YANG Hongmiao, YANG Caiyun, ZHOU Yuting, WU Hao. Activated Sludge Incineration Ash Derived Fenton-like Catalyst: Preparation and Degradation Performance on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1135-1142. |
[5] | ZHAO Yawen, QU Fajin, WANG Yanyi, WANG Zhiwen, CHEN Chusheng. Preparation and Properties of Aluminum Silicate Fiber Supported PtTFPP-PDMS Flexible Oxygen Sensing Components [J]. Journal of Inorganic Materials, 2024, 39(10): 1084-1090. |
[6] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[7] | SHI Zhe, LIU Weiye, ZHAI Dong, XIE Jianjun, ZHU Yufang. Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties [J]. Journal of Inorganic Materials, 2023, 38(7): 763-770. |
[8] | LI Qianli, LI Naixin, LI Yucheng, LIU Shenye, CHENG Shuai, YANG Guang, REN Kuan, WANG Feng, ZHAO Jingtai. Research Progress of Radio-photoluminescence Materials and Their Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 731-749. |
[9] | WU Rui, ZHANG Minhui, JIN Chenyun, LIN Jian, WANG Deping. Photothermal Core-Shell TiN@Borosilicate Bioglass Nanoparticles: Degradation and Mineralization [J]. Journal of Inorganic Materials, 2023, 38(6): 708-716. |
[10] | FAN Dong, ZHONG Xin, WANG Yawen, ZHANG Zhenzhong, NIU Yaran, LI Qilian, ZHANG Le, ZHENG Xuebin. Corrosion Behavior and Mechanism of Aluminum-rich CMAS on Rare-earth Silicate Environmental Barrier Coatings: [J]. Journal of Inorganic Materials, 2023, 38(5): 544-552. |
[11] | LUO Shuwen, MA Mingsheng, LIU Feng, LIU Zhifu. Corrosion Behavior and Mechanism of LTCC Materials in Ca-B-Si System [J]. Journal of Inorganic Materials, 2023, 38(5): 553-560. |
[12] | WANG Lei, LI Jianjun, NING Jun, HU Tianyu, WANG Hongyang, ZHANG Zhanqun, WU Linxin. Enhanced Degradation of Methyl Orange with CoFe2O4@Zeolite Catalyst as Peroxymonosulfate Activator: Performance and Mechanism [J]. Journal of Inorganic Materials, 2023, 38(4): 469-476. |
[13] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[14] | SHENG Lili, CHANG Jiang. Photo/Magnetic Thermal Fe2SiO4/Fe3O4 Biphasic Bioceramic and Its Composite Electrospun Membrane: Preparation and Antibacterial [J]. Journal of Inorganic Materials, 2022, 37(9): 983-990. |
[15] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||