Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (2): 204-214.DOI: 10.15541/jim20230503
Special Issue: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
• PERSPECTIVE • Previous Articles Next Articles
Received:
2023-10-31
Revised:
2023-12-15
Published:
2023-12-19
Online:
2023-12-19
Contact:
ZHI Chunyi, professor. E-mail: cy.zhi@cityu.edu.hkAbout author:
CHEN Ze (1993-), male, PhD. E-mail: ze.chen@cityu.edu.hk
CLC Number:
CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects[J]. Journal of Inorganic Materials, 2024, 39(2): 204-214.
Fig. 1 Schematic illustration of preparing MXene (a) Process of chemical etching[22]; (b) Molten salt method for TiN-based MXene preparation[29]; (c) CuCl2 Lewis molten salt for MXene preparation[32]
Material | Capacity/(mAh·g-1) | Voltage/V(vs. Zn2+/Zn) | Capacity retention | Ref. | |
---|---|---|---|---|---|
Cathode | MnO2 | 258 | 1.3 | 94%(2000 cycles) | [ |
V2O5 | 470 | 0.75 | 91%(4000 cycles) | [ | |
ZnHCF | 65 | 1.75 | 81%(100 cycles) | [ | |
I2 | 174 | 1.15 | 90%(3000 cycles) | [ | |
S | 1105 | 0.5 | 85%(50 cycles) | [ | |
Se | 611 | 1.2 | 80%(1000 cycles) | [ | |
Te | 420 | 0.6 | 82%(500 cycles) | [ | |
Anode | TiS2 | 140 | 0.3 | 74%(100 cycles) | [ |
Zn2Mo6S8 | 62.3 | 0.35 | 81%(10 cycles) | [ | |
Cu2-xSe | 230 | 0.45 | 96%(20000 cycles) | [ |
Table 1 Summary of the typical cathodes and anodes materials in ZIBs
Material | Capacity/(mAh·g-1) | Voltage/V(vs. Zn2+/Zn) | Capacity retention | Ref. | |
---|---|---|---|---|---|
Cathode | MnO2 | 258 | 1.3 | 94%(2000 cycles) | [ |
V2O5 | 470 | 0.75 | 91%(4000 cycles) | [ | |
ZnHCF | 65 | 1.75 | 81%(100 cycles) | [ | |
I2 | 174 | 1.15 | 90%(3000 cycles) | [ | |
S | 1105 | 0.5 | 85%(50 cycles) | [ | |
Se | 611 | 1.2 | 80%(1000 cycles) | [ | |
Te | 420 | 0.6 | 82%(500 cycles) | [ | |
Anode | TiS2 | 140 | 0.3 | 74%(100 cycles) | [ |
Zn2Mo6S8 | 62.3 | 0.35 | 81%(10 cycles) | [ | |
Cu2-xSe | 230 | 0.45 | 96%(20000 cycles) | [ |
Fig. 2 Application of MXene-based cathodes for ZIBs (a) Schematic picture of the composite of MXene/H2V3O8 and the corresponding (b) rate performance and (c) charging/discharging curves[58]; (d) Preparative mechanism of I2 cathode with Nb2CTx as host; (e, f) CV curves, (g) corresponding capacity contribution and (h) charging/discharging curves of V2CTx[61]; (i) Surface oxidation of V2CTx based on the electrochemical activation[63]
Fig. 3 Application of MXene-based anodes for ZIBs (a) Schematic illustration of the composite of MXene/chitosan for smooth Zn deposition[72]; (b) Schematic picture of the preparation of MXene/Zn paper and (c) corresponding Coulombic efficiency of Zn deposition/dissolution[74]; (d) Schematic and (e, f) SEM images of MXene@Zn powder; (g) Nucleation and cycling performance of Zn deposition/dissolution based on the MXene@Zn powder anode; (i) Cycling performance and (j) charging/discharging curves of full cell[75]
Fig. 4 Application of MXene-based electrolytes for ZIBs (a) Schematic illustration of the MXene additive for smooth Zn deposition, (b) corresponding formed morphology after electrodeposition, and (c) cycling performance of Zn//Zn symmetry battery[78]; (d) Schematic illustration of preparing MXene incorporated solid polymer electrolytes, (e) cycling performance of Zn//Zn symmetry battery at high temperature and (f) thermal conductivity of various solid polymer electrolyte membranes[79]
Fig. 5 Strategies for improving performance of MXene incorporated ZIBs (a) Preparative shematic, (b) corresponding SEM image with elemental mappings and (c) rate performance of Mn2+ pre-intercalated V2CTx MXene [88]; (d) Schematic picture of the preparation of S-Ti3C2Tx/PANI[95]; (e) Preparation process, and (f) XRD pattern, (g, h) SEM images, and (i) merits of diamine-intercalated MXene[110]
[1] |
DINCER I, ACAR C. A review on clean energy solutions for better sustainability. Int. J. Energy Res., 2015, 39(5): 585.
DOI URL |
[2] |
KITTNER N, LILL F, KAMMEN D M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy, 2017, 2: 17125.
DOI URL |
[3] |
WHITTINGHAM M S. Lithium batteries and cathode materials. Chem. Rev., 2004, 104: 4271.
PMID |
[4] |
VON WALD CRESCE A, XU K. Aqueous lithium-ion batteries. Carbon Energy, 2021, 3(5): 721.
DOI URL |
[5] |
MANTHIRAM A, FU Y, CHUNG S-H, et al. Rechargeable lithium-sulfur batteries. Chem. Rev., 2014, 114(23): 11751.
DOI PMID |
[6] |
ZHANG N, CHEN X, YU M, et al. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev., 2020, 49(13): 4203.
DOI PMID |
[7] |
DU W, ANG E H, YANG Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci., 2020, 13(10): 3330.
DOI URL |
[8] |
JIA X, LIU C, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev., 2020, 120(15): 7795.
DOI PMID |
[9] |
LV Y, XIAO Y, MA L, et al. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater., 2022, 34(4): 2106409.
DOI URL |
[10] |
WANG X, ZHANG Z, XI B, et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano, 2021, 15(6): 9244.
DOI PMID |
[11] |
YANG Q, LI X, CHEN Z, et al. Cathode engineering for high energy density aqueous Zn batteries. ACC. Mater. Res., 2022, 3(1): 78.
DOI URL |
[12] |
CHEN Z, LI C, YANG Q, et al. Conversion-type nonmetal elemental tellurium anode with high utilization for mild/alkaline zinc batteries. Adv. Mater., 2021, 33: 2105426.
DOI URL |
[13] |
CHEN Z, YANG Q, MO F, et al. Aqueous zinc-tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv. Mater., 2020, 32: 2001469.
DOI URL |
[14] |
CHEN J, DING Y, YAN D, et al. Synthesis of MXene and its application for zinc-ion storage. SusMat, 2022, 2(3): 293.
DOI URL |
[15] |
LI X, HUANG Z, SHUCK C E, et al. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem., 2022, 6(6): 389.
DOI PMID |
[16] |
KARAHAN H E, GOH K, ZHANG C, et al. MXene materials for designing advanced separation membranes. Adv. Mater., 2020, 32(29): 1906697.
DOI URL |
[17] |
LI Y, HUANG S, PENG S, et al. Toward smart sensing by MXene. Small, 2023, 19(14): 2206126.
DOI URL |
[18] |
HUANG W, HU L, TANG Y, et al. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater., 2020, 30(49): 2005223.
DOI URL |
[19] |
LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceed. National Acad. Sci., 2014, 111(47): 16676.
DOI URL |
[20] |
JAVED M S, MATEEN A, ALI S, et al. The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small, 2022, 18(26): 2201989.
DOI URL |
[21] | LI J, WANG C, YU Z, et al. MXenes for zinc-based electrochemical energy storage devices. Small, 2023: 2304543. |
[22] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37): 4248.
DOI URL |
[23] |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29(18): 7633.
DOI URL |
[24] |
WANG X, GARNERO C, ROCHARD G, et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J. Mater. Chem. A, 2017, 5(41): 22012.
DOI URL |
[25] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78.
DOI |
[26] |
FENG A, YU Y, JIANG F, et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram. Int., 2017, 43(8): 6322.
DOI URL |
[27] |
HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater., 2014, 26(7): 2374.
PMID |
[28] |
WANG L, ZHANG H, WANG B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett., 2016, 12: 702.
DOI URL |
[29] |
URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385.
DOI URL |
[30] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc., 2019, 141(11): 4730.
DOI PMID |
[31] |
LI M, LI Y B, LUO K, et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach. J. Inorg. Mater., 2019, 34(1): 60.
DOI URL |
[32] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater., 2020, 19(8): 894.
DOI PMID |
[33] |
SHI H, ZHANG P, LIU Z, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed., 2021, 60(16): 8689.
DOI PMID |
[34] |
LI X, LI M, YANG Q, et al. In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv. Energy Mater., 2020, 10(36): 2001791.
DOI URL |
[35] |
NAGUIB M, MASHTALIR O, LUKATSKAYA M R, et al. One- step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun., 2014, 50(56): 7420.
DOI URL |
[36] |
DONG Y F, WU Z S, ZHENG S H, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano, 2017, 11(5): 4792.
DOI URL |
[37] |
XUE Q, ZHANG H, ZHU M, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater., 2017, 29(15): 1604847.
DOI URL |
[38] |
ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater., 2017, 29(11): 4848.
DOI URL |
[39] |
MASHTALIR O, COOK K M, MOCHALIN V N, et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A, 2014, 2(35): 14334.
DOI URL |
[40] |
AHMED B, ANJUM D H, HEDHILI M N, et al. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 2016, 8(14): 7580.
DOI URL |
[41] |
HAN M, YIN X, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Inter., 2016, 8(32): 21011.
DOI URL |
[42] |
LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng.: B, 2015, 191: 33.
DOI URL |
[43] |
LI X, YIN X, HAN M, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C, 2017, 5(16): 4068.
DOI URL |
[44] |
MING J, GUO J, XIA C, et al. Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng.: R, 2019, 135: 58.
DOI URL |
[45] |
TANG B, SHAN L, LIANG S, et al. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci., 2019, 12(11): 3288.
DOI URL |
[46] | FANG G, ZHOU J, PAN A, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett., 2018, 3(10): 24801. |
[47] |
RUAN P, LIANG S, LU B, et al. Design strategies for high- energy-density aqueous zinc batteries. Angew. Chemie Int. Ed., 2022, 61(17): e202200598.
DOI URL |
[48] |
ZHANG N, CHENG F, LIU J, et al. Rechargeable aqueous zinc- manganese dioxide batteries with high energy and power densities. Nature Comm., 2017, 8: 405.
DOI |
[49] |
ZHANG N, DONG Y, JIA M, et al. Rechargeable aqueous Zn- V2O5battery with high energy density and long cycle life. ACS Energy Lett., 2018, 3(6): 1366.
DOI URL |
[50] |
ZHANG L, CHEN L, ZHOU X, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater., 2015, 5(2): 1400930.
DOI URL |
[51] |
PAN H, LI B, MEI D, et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett., 2017, 2(12): 2674.
DOI URL |
[52] |
LI W, WANG K, JIANG K. A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci., 2020, 7(23): 2000761.
DOI URL |
[53] | CHEN Z, MO F, WANG T, et al. Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy & Envir. Sci., 2021, 14(4): 2441. |
[54] |
LI W, WANG K, CHENG S, et al. An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater., 2019, 9(27): 1900993.
DOI URL |
[55] |
CHAE M S, HONG S T. Prototype system of rocking-chair Zn-ion battery adopting zinc chevrel phase anode and rhombohedral zinc hexacyanoferrate cathode. Batteries, 2019, 5(1): 3.
DOI URL |
[56] |
YANG Y, XIAO J, CAI J, et al. Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: an insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Fun. Mater., 2020, 31: 2005092.
DOI URL |
[57] |
LIU H, JIANG L, CAO B, et al. Van der Waals interaction-driven self-assembly of V2O5 nanoplates and MXene for high-performing zinc-ion batteries by suppressing vanadium dissolution. ACS Nano, 2022, 16(9): 14539.
DOI URL |
[58] |
LIU C, XU W, MEI C, et al. Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem. Eng. J., 2021, 405: 126737.
DOI URL |
[59] |
DU W, MIAO L, SONG Z, et al. Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer. J. Power Sources, 2022, 536: 231512.
DOI URL |
[60] |
FENG Y, FENG Y, ZHANG Y, et al. Flexible zinc-ion microbattery based on a VS2/MXene cathode with high cycle life. J. Power Sources, 2022, 545: 231944.
DOI URL |
[61] |
LI X, LI N, HUANG Z, et al. Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement. Adv. Mater., 2021, 33(8): 2006897.
DOI URL |
[62] | LI X, LI N, HUANG Z, et al. Confining aqueous Zn-Br halide redox chemistry by Ti3C2Tx MXene. ACS Nano, 2021, 15(1): 17186. |
[63] |
LIU Y, JIANG Y, HU Z, et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater., 2021, 31(8): 2008033.
DOI URL |
[64] |
SHA D, LU C, HE W, et al. Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano, 2022, 16(2): 2711.
DOI URL |
[65] |
SHI M, WANG B, SHEN Y, et al. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J., 2020, 399: 125627.
DOI URL |
[66] |
SHI J, HOU Y, LIU Z, et al. The high-performance MoO3-x/ MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy, 2022, 91: 106651.
DOI URL |
[67] |
LONG F, ZHANG Q, SHI J, et al. Ultrastable and ultrafast 3D charge-discharge network of robust chemically coupled 1 T- MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries. Chem. Eng. J., 2023, 455: 140539.
DOI URL |
[68] |
LI X, MA X, HOU Y, et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule, 2021, 5(11): 2993.
DOI URL |
[69] |
SHIN J, LEE J, PARK Y, et al. Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci., 2020, 11(8): 2028.
DOI PMID |
[70] |
LI H, MA L, HAN C, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy, 2019, 62: 550.
DOI URL |
[71] |
XU W, WANG Y. Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett., 2019, 11(1): 90.
DOI |
[72] |
TAN L, WEI C, ZHANG Y, et al. Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem. Eng. J., 2022, 431: 134277.
DOI URL |
[73] |
ABERLE B, KOWALCZYK D, MASSINI S, et al. Methylation of unactivated alkenes with engineered methyltransferases to generate non-natural terpenoids. Angew. Chem. Int. Ed., 2023, 62(26): e202301601.
DOI URL |
[74] |
TIAN Y, AN Y, WEI C, et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano, 2019, 13(10): 11676.
DOI URL |
[75] |
LI X, LI Q, HOU Y, et al. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano, 2021, 15(9): 14631.
DOI URL |
[76] |
KUMAR J A, PRAKASH P, KRITHIGA T, et al. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere, 2022, 286: 131607.
DOI URL |
[77] |
CHEN Z, MA X, HOU Y, et al. Grafted MXenes based electrolytes for 5V-class solid-state batteries. Advanced Functional Materials, 33: 2214539.
DOI URL |
[78] |
SUN C, WU C, GU X, et al. Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett., 2021, 13: 89.
DOI |
[79] | CHEN Z, LI X L, WANG D H, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy & Environ. Sci., 2021, 14(6): 3492. |
[80] |
QIN L, TAO Q, LIU X, et al. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy, 2019, 60: 734.
DOI URL |
[81] |
LIM K R G, SHEKHIREV M, WYATT B C, et al. Fundamentals of MXene synthesis. Nat. Synth., 2022, 1(8): 601.
DOI |
[82] |
ZHAN X, SI C, ZHOU J, et al. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz, 2020, 5(2): 235.
DOI URL |
[83] |
SHUCK C E, SARYCHEVA A, ANAYEE M, et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater., 2020, 22(3): 1901241.
DOI URL |
[84] | LEI J C, ZHANG X, ZHOU Z. Recent advances in MXene: preparation, properties, and applications. Front. Phys., 2015, 10: 276. |
[85] |
ZHAN C, NAGUIB M, LUKATSKAYA M, et al. Understandingthe MXene pseudocapacitance. J. Phys. Chem. Lett., 2018, 9(6): 1223.
DOI URL |
[86] |
LI X, WANG C, CAO Y, et al. Functional MXene materials: progress of their applications. Chem.-An Asian J., 2018, 13(19): 2742.
DOI URL |
[87] |
ULLAH S, SHAHZAD F, QIU B, et al. MXene-based aptasensors: advances, challenges, and prospects. Prog. Mater. Sci., 2022, 129: 100967.
DOI URL |
[88] | ZHU X, CAO Z, LI X-L, et al. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-ion batteries. Energy Storage Mater., 2022, 45: 568. |
[89] |
DING L, WEI Y, LI L, et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun., 2018, 9: 155.
DOI PMID |
[90] |
JIANG Q, KURRA N, ALHABEB M, et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater., 2018, 8(13): 1703043.
DOI URL |
[91] |
LI J, YUAN X, LIN C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater., 2017, 7(15): 1602725.
DOI URL |
[92] |
JAVED M S, CHEN J, CHEN L, et al. Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. J. Mater. Chem. A, 2016, 4(2): 667.
DOI URL |
[93] |
HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun., 2019, 10: 522.
DOI |
[94] |
LIU Y, DAI Z, ZHANG W, et al. Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano, 2021, 15(5): 9065.
DOI URL |
[95] |
AN Y, TIAN Y, LIU C, et al. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano, 2021, 15(9): 15259.
DOI URL |
[96] |
GASSER T M, THOENY A V, FORTES A D, et al. Structural characterization of ice XIX as the second polymorph related to ice VI. Nat. Commun., 2021, 12: 1128.
DOI PMID |
[97] |
MA L, SCHROEDER M A, BORODIN O, et al. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy, 2020, 5(10): 743.
DOI |
[98] |
SUMBOJA A, LIU J, ZHENG W G, et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev., 2018, 47(15): 5919.
DOI PMID |
[99] |
MATEEN A, ANSARI M Z, ABBAS Q, et al. In situ nitrogen functionalization of 2D-Ti3C2Tx-MXenes for high-performance Zn-ion supercapacitor. Molecules, 2022, 27(21): 7446.
DOI URL |
[100] |
LI Z, WANG D, SUN Z, et al. N, P dual-doped MXene nanocomposites for boosting zinc-ion storage capability. Electrochim. Acta, 2023, 455: 142440.
DOI URL |
[101] |
ZHENG W, HALIM J, EL GHAZALY A, et al. Flexible free- standing MoO3/Ti3C2Tz MXene composite films with high gravimetric and volumetric capacities. Adv. Sci., 2021, 8(3): 2003656.
DOI URL |
[102] |
SHEN L, ZHOU X, ZHANG X, et al. Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A, 2018, 6(46): 23513.
DOI URL |
[103] | LI X, LI M, LI X, et al. Low infrared emissivity and strong stealth of Ti-based MXenes. Research, 2022:9892628. |
[104] |
SUN N, ZHU Q, ANASORI B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater., 2019, 29(51): 1906282.
DOI URL |
[105] |
LIANG W, ZHITOMIRSKY I. MXene-carbon nanotube composite electrodes for high active mass asymmetric supercapacitors. J. Mater. Chem. A, 2021, 9(16): 10335.
DOI URL |
[106] |
ZOU K, CAI P, WANG B, et al. Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett., 2020, 12: 121.
DOI PMID |
[107] |
WU Z, LIU X, SHANG T, et al. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater., 2021, 31(41): 2102874.
DOI URL |
[108] |
SHANG T, LIN Z, QI C, et al. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater., 2019, 29(33): 1903960.
DOI URL |
[109] |
BU F, ZAGHO M M, IBRAHIM Y, et al. Porous MXenes: synthesis, structures, and applications. Nano Today, 2020, 30: 100803.
DOI URL |
[110] |
PENG M, WANG L, LI L, et al. Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability. Adv. Funct. Mater., 2022, 32(7): 2109524.
DOI URL |
[111] |
LIANG K, MATSUMOTO R A, ZHAO W, et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater., 2021, 31(33): 2104007.
DOI URL |
[112] |
HE P, YAN M, ZHANG G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater., 2017, 7(11): 1601920.
DOI URL |
[113] |
LIANG G, LI X, WANG Y, et al. Building durable aqueous K-ion capacitors based on MXene family. Nano Research Energy, 2022, 1(1): e9120002.
DOI URL |
[1] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[2] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[3] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[4] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[5] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[6] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[7] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[8] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. |
[9] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[10] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[11] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[12] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[13] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[14] | DING Haoming, LI Mian, LI Youbing, CHEN Ke, XIAO Yukun, ZHOU Jie, TAO Quanzheng, Johanna Rosen, YIN Hang, BAI Yuelei, ZHANG Bikun, SUN Zhimei, WANG Junjie, ZHANG Yiming, HUANG Zhenying, ZHANG Peigen, SUN Zhengming, HAN Meikang, ZHAO Shuang, WANG Chenxu, HUANG Qing. Progress in Structural Tailoring and Properties of Ternary Layered Ceramics [J]. Journal of Inorganic Materials, 2023, 38(8): 845-884. |
[15] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||