Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 619-633.DOI: 10.15541/jim20220566
• REVIEW • Previous Articles Next Articles
DING Ling1(), JIANG Rui1, TANG Zilong2, YANG Yunqiong3
Received:
2022-09-26
Revised:
2022-11-21
Published:
2022-12-09
Online:
2022-12-09
About author:
DING Ling (1976-), female, professor. E-mail: dingling@wust.edu.cn
Supported by:
CLC Number:
DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors[J]. Journal of Inorganic Materials, 2023, 38(6): 619-633.
Fig. 1 Schematic illustration of structural and electronic structural changes of MXene in (a) aqueous and (b) nonaqueous Li+ electrolytes[21] φ, inner potential; ηe, electron electrochemical potential
Fig. 2 Preparation method and electrochemical performance of iodine-containing terminated MXene[43] (a) Preparing strategy by Lewis-acid melt etching; (b) CV curves of I-Ti3C2 MXene and HF-Ti3C2Tx MXene at 5 mV·s−1; WE, working electrode; RE, reference electrode; CE, counter electrode Colorful figures are available on website
Fig. 3 Synthesis procedure and electrochemical performance of 900N-Ti2CTx nanosheets[49] (a) Synthesis procedure; (b) CV curves at 100 mV·s−1; (c) Discharge current density as a function of scanning rate; 1 Å = 0.1 nm Colorful figures are available on website
Fig. 4 (a) Schematic illustration of the preparation and (b) electrochemical performance of the MXene ribbon MR-0.5[53] Colorful figures are available on website
Fig. 5 Schematic illustration and electrochemical performance of d-Ti3C2/NF composite[58] (a) Schematic illustration; (b) CV curves at 20 mV·s−1; (c) GCD curves at 1 A·g−1 Colorful figures are available on website
Fig. 6 Preparative schematic illustration and electrochemical performance of MXene/PANI film[61] (a) Preparative schematic diagram; (b) CV plots of MP0, MP2, MP5 and MP8 at a scan rate of 50 mV·s−1 Colorful figures are available on website
Fig. 7 Schematic diagram of the equipment used for size grading MXene and size-refinement effect characterization[69] (a) Schematic diagram of the equipment; (b) Stress-strain curves; (c) GCD curves at 1 A·g−1 Colorful figures are available on website
Fig. 8 Preparative schematic illustration of multi-scale structural engineering strategy and electrochemical performance of ordered MXene hydrogel supercapacitor electrode[70] (a) Preparative schematic illustration; (b) CV plots at 100 mV·s−1; (c) Rate performance Colorful figures are available on website
Electrode | Specific capacity | Rate capability | Power density/energy density | Electrolyte | Ref. |
---|---|---|---|---|---|
MXene-rHGO | 1445 F·cm−3@2 mV·s−1 | 988 F·cm−1@500 mV·s−1 | 38.6 Wh·L−1/206 W·L−1 | 3 mol·L−1 H2SO4 | [ |
Ti3C2/CNTs | 134 F·g-1@1 A·g-1 | - | 2.77 Wh·kg−1/311 W·kg−1 | 6 mol·L−1 KOH | [ |
MnO2@MXene/CNT | 371.1 F·cm−3@1 A·cm−3 | - | 8.22 mWh·cm−3/ 276.28 mW·cm−3 | 1 mol·L−1 H2SO4 | [ |
MnO2/Ti3C2Tx | 130.5 F·g−1@0.2 A·g−1 | 130.5 F·g−1@0.2 A·g−1 | - | 1 mol·L−1 Na2SO4 | [ |
Co3O4-Nb2C | 1061 F·g-1@2 A·g-1 | 547 F·g−1@50 A·g−1 | 60.3 Wh·kg−1/670 W·kg−1 | 6 mol·L−1 KOH | [ |
Co-MXene | 1081 F·g-1@0.5 A·g-1 | - | 26.06 Wh·kg−1/700 W·kg−1 | 6 mol·L−1 KOH | [ |
MXene/MnCo2O4 | 806.67 F·g-1@1 A·g-1 | 545.83 F·g−1@5 A·g−1 | 26.8 Wh·kg−1/2.88 kW·kg−1 | 1 mol·L−1 KOH | [ |
NiMoO4/Ti3C2Tx | 545.5 C·g−1 (1364 F·g−1)@0.5 A·g−1 | 66.5 C·g−1 @5 A·g−1 | 33.36 Wh·kg−1/400.08 W·kg−1 | 3 mol·L−1 KOH | [3] |
MoO3 NWs/MXene@CC | 775 F·g-1@1 A·g-1 | - | - | 2 mol·L−1 KOH | [ |
Ti3C2Tx/CoS2 | 1320 F·g−1@1 A·g−1 | 1320 F·g−1@1 A·g−1 | - | 2 mol·L−1 KOH | [ |
MXene-NiCo2S4@NF | 596.69 C·g−1@1 A·g−1 | 596.69 C·g−1@1 A·g−1 | - | 3 mol·L−1 KOH | [ |
Ti3C2-DA-NiMoS4 | 1288 F·g-1@1 A·g-1 | 1288 F·g−1@1 A·g−1 | 40.5 Wh·kg−1/810 W·kg−1 | Not mentioned | [ |
NiCo2Se4/MXene | 953.8 F·g-1@1 A·g-1 | - | 22.4 Wh·kg−1/800 W·kg−1 | 3 mol·L−1 KOH | [ |
Co Ni(Ox)Se @MXene | 1782 F·g-1@5 mV·s-1 | - | 7.2 kW·kg−1/131.9 Wh·kg−1 | 1 mol·L−1 KOH | [ |
NS-MXene | 495 F·g-1@1 A·g-1 | 180 F·g−1@10 A·g−1 | - | 1 mol·L−1 H2SO4 | [ |
MXene-PANI/a-Fe2O3-MnO2/MXene-PANI | 661 F·g-1 3138 mF·cm−3@3 mV·s -1 | - | 53.32 Wh·L−1/17.45 Wh·kg−1 | 1 mol·L−1 H2SO4 | [ |
Ti3C2Tx/Ni-MOFs | 1124 F·g-1@1 A·g-1 | 697 F·g−1@20 A·g−1 | 24 Wh·kg−1/8 kW·kg−1 | 6 mol·L−1 KOH | [ |
BiOCl-Ti3C2Tx | 396.5 F·cm−3@1 A·g-1 | 228 F·cm−3@15 A·g−1 | 15.2 Wh·kg−1/567.4 W·kg−1 | 1 mol·L−1 KOH | [ |
Table 1 Examples of electrochemical properties of MXene-based electrodes
Electrode | Specific capacity | Rate capability | Power density/energy density | Electrolyte | Ref. |
---|---|---|---|---|---|
MXene-rHGO | 1445 F·cm−3@2 mV·s−1 | 988 F·cm−1@500 mV·s−1 | 38.6 Wh·L−1/206 W·L−1 | 3 mol·L−1 H2SO4 | [ |
Ti3C2/CNTs | 134 F·g-1@1 A·g-1 | - | 2.77 Wh·kg−1/311 W·kg−1 | 6 mol·L−1 KOH | [ |
MnO2@MXene/CNT | 371.1 F·cm−3@1 A·cm−3 | - | 8.22 mWh·cm−3/ 276.28 mW·cm−3 | 1 mol·L−1 H2SO4 | [ |
MnO2/Ti3C2Tx | 130.5 F·g−1@0.2 A·g−1 | 130.5 F·g−1@0.2 A·g−1 | - | 1 mol·L−1 Na2SO4 | [ |
Co3O4-Nb2C | 1061 F·g-1@2 A·g-1 | 547 F·g−1@50 A·g−1 | 60.3 Wh·kg−1/670 W·kg−1 | 6 mol·L−1 KOH | [ |
Co-MXene | 1081 F·g-1@0.5 A·g-1 | - | 26.06 Wh·kg−1/700 W·kg−1 | 6 mol·L−1 KOH | [ |
MXene/MnCo2O4 | 806.67 F·g-1@1 A·g-1 | 545.83 F·g−1@5 A·g−1 | 26.8 Wh·kg−1/2.88 kW·kg−1 | 1 mol·L−1 KOH | [ |
NiMoO4/Ti3C2Tx | 545.5 C·g−1 (1364 F·g−1)@0.5 A·g−1 | 66.5 C·g−1 @5 A·g−1 | 33.36 Wh·kg−1/400.08 W·kg−1 | 3 mol·L−1 KOH | [3] |
MoO3 NWs/MXene@CC | 775 F·g-1@1 A·g-1 | - | - | 2 mol·L−1 KOH | [ |
Ti3C2Tx/CoS2 | 1320 F·g−1@1 A·g−1 | 1320 F·g−1@1 A·g−1 | - | 2 mol·L−1 KOH | [ |
MXene-NiCo2S4@NF | 596.69 C·g−1@1 A·g−1 | 596.69 C·g−1@1 A·g−1 | - | 3 mol·L−1 KOH | [ |
Ti3C2-DA-NiMoS4 | 1288 F·g-1@1 A·g-1 | 1288 F·g−1@1 A·g−1 | 40.5 Wh·kg−1/810 W·kg−1 | Not mentioned | [ |
NiCo2Se4/MXene | 953.8 F·g-1@1 A·g-1 | - | 22.4 Wh·kg−1/800 W·kg−1 | 3 mol·L−1 KOH | [ |
Co Ni(Ox)Se @MXene | 1782 F·g-1@5 mV·s-1 | - | 7.2 kW·kg−1/131.9 Wh·kg−1 | 1 mol·L−1 KOH | [ |
NS-MXene | 495 F·g-1@1 A·g-1 | 180 F·g−1@10 A·g−1 | - | 1 mol·L−1 H2SO4 | [ |
MXene-PANI/a-Fe2O3-MnO2/MXene-PANI | 661 F·g-1 3138 mF·cm−3@3 mV·s -1 | - | 53.32 Wh·L−1/17.45 Wh·kg−1 | 1 mol·L−1 H2SO4 | [ |
Ti3C2Tx/Ni-MOFs | 1124 F·g-1@1 A·g-1 | 697 F·g−1@20 A·g−1 | 24 Wh·kg−1/8 kW·kg−1 | 6 mol·L−1 KOH | [ |
BiOCl-Ti3C2Tx | 396.5 F·cm−3@1 A·g-1 | 228 F·cm−3@15 A·g−1 | 15.2 Wh·kg−1/567.4 W·kg−1 | 1 mol·L−1 KOH | [ |
[1] | 刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景. 储能科学与技术, 2022, 11(2):704. |
[2] |
ZHANG J, JIANG D, LIAO L, et al. Ti3C2Tx MXene based hybrid electrodes for wearable supercapacitors with varied deformation capabilities. Chemical Engineering Journal, 2022, 429: 132232.
DOI URL |
[3] |
WANG Y, SUN J, QIAN X, et al. 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. Journal of Power Sources, 2019, 414: 540.
DOI URL |
[4] |
SHAN Q, MU X, ALHABEB M, et al. Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochemistry Communications, 2018, 96: 103.
DOI URL |
[5] | 邵光伟, 郭珊珊, 于瑞, 等. 可拉伸超级电容器的研究进展: 电极、电解质和器件. 物理学报, 2020, 69(17):155. |
[6] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37):4248.
DOI URL |
[7] |
NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2):1322.
DOI PMID |
[8] |
MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4: 1716.
DOI PMID |
[9] |
ZHANG J F, CAO H Y, WANG H B. Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017, 32(6):561.
DOI URL |
[10] |
YAN H T, LI X H, LIU M Z, et al. Quantum capacitance of supercapacitor electrodes based on the F-functionalized M2C MXenes: a first-principles study. Vacuum, 2022, 201: 111094.
DOI URL |
[11] |
WANG Q, PAN X, WANG X, et al. Fabrication strategies and application fields of novel 2D Ti3C2Tx (MXene) composite hydrogels: a mini-review. Ceramics International, 2021, 47(4):4398.
DOI URL |
[12] |
ZHAO X, VASHISTH A, BLIVIN J W, et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Advanced Materials Interfaces, 2020, 7(20):2000845.
DOI URL |
[13] |
BU F, ZAGHO M M, IBRAHIM Y, et al. Porous MXenes: synthesis, structures, and applications. Nano Today, 2020, 30: 100803.
DOI URL |
[14] |
THAKUR N, KUMAR P, SATI D C, et al. Recent advances in two-dimensional MXenes for power and smart energy systems. Journal of Energy Storage, 2022, 50: 104604.
DOI URL |
[15] |
MENG W, LIU X, SONG H, et al. Advances and challenges in 2D MXenes: from structures to energy storage and conversions. Nano Today, 2021, 40: 101273.
DOI URL |
[16] |
JIANG H, WANG Z, YANG Q, et al. A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochimica Acta, 2018, 290: 695.
DOI URL |
[17] |
LUKATSKAYA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2017, 2(8):17105.
DOI URL |
[18] | ZHANG J, KONG N, HEGH D, et al. Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Applied Materials & Interfaces, 2020, 12(30):34032. |
[19] |
MOMODU D, ZERAATI A S, PABLOS F L, et al. Hybrid energy storage using nitrogen-doped graphene and layered-MXene (Ti3C2) for stable high-rate supercapacitors. Electrochimica Acta, 2021, 388:138664.
DOI URL |
[20] |
WU J, LI Q, SHUCK C E, et al. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Research, 2021, 15(1):535.
DOI |
[21] |
OKUBO M, SUGAHARA A, KAJIYAMA S, et al. MXene as a charge storage host. Accounts of Chemical Research, 2018, 51(3):591.
DOI PMID |
[22] |
HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced Materials, 2018, 30(52):1804779.
DOI URL |
[23] | YING G, KOTA S, DILLON A D, et al. Conductive transparent V2CTx (MXene) films. Chemistry of Flat Materials, 2018, 8:25. |
[24] |
WANG K, ZHOU Y, XU W, et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceramics International, 2016, 42(7):8419.
DOI URL |
[25] |
HALIM J, PERSSON I, MOON E J, et al. Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films. Journal of Physics: Condensed Matter, 2019, 31(16):165301.
DOI URL |
[26] |
ELEMIKE E E, OSAFILE O E, OMUGBE E. New perspectives 2Ds to 3Ds MXenes and graphene functionalized systems as high performance energy storage materials. Journal of Energy Storage, 2021, 42:102993.
DOI URL |
[27] |
BORYSIUK V N, MOCHALIN V N, GOGOTSI Y. Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a molecular dynamics study. Computational Materials Science, 2018, 143:418.
DOI URL |
[28] | ZHANG N, HONG Y, YAZDANPARAST S, et al. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study. 2D Materials, 2018, 5(4):045004. |
[29] |
LI X, MA Y, YUE Y, et al. A flexible Zn-ion hybrid micro- supercapacitor based on MXene anode and V2O5 cathode with high capacitance. Chemical Engineering Journal, 2022, 428:130965.
DOI URL |
[30] |
KAJIYAMA S, SZABOVA L, IINUMA H, et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination. Advanced Energy Materials, 2017, 7(9):1601873.
DOI URL |
[31] |
KAJIYAMA S, SZABOVA L, SODEYAMA K, et al. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano, 2016, 10(3):3334.
DOI PMID |
[32] |
XU K, JI X, ZHANG B, et al. Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: insights from molecular dynamic study. Electrochimica Acta, 2016, 196:75.
DOI URL |
[33] |
YU H, WANG Y, JING Y, et al. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small, 2019, 15(25):1901503.
DOI URL |
[34] |
XIAO M X, LI M M, SONG E H, et al. Halogenated Ti3C2 MXene as high capacity electrode material for Li-ion batteries. Journal of Inorganic Materials, 2022, 37(6):660.
DOI URL |
[35] |
LIU W, ZHENG Y, ZHANG Z, et al. Ultrahigh gravimetric and volumetric capacitance in Ti3C2Tx MXene negative electrode enabled by surface modification and in-situ intercalation. Journal of Power Sources, 2022, 521:230965.
DOI URL |
[36] |
CHEN W, TANG J, CHENG P, et al. 3D porous MXene (Ti3C2Tx) prepared by alkaline-induced flocculation for supercapacitor electrodes. Materials, 2022, 15(3):925.
DOI URL |
[37] |
CHEN J, CHEN H, CHEN M, et al. Nacre-inspired surface- engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chemical Engineering Journal, 2022, 428:131380.
DOI URL |
[38] |
LI J, YUAN X, LIN C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials, 2017, 7(15):1602725.
DOI URL |
[39] |
CHEN X, ZHU Y, ZHANG M, et al. n-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano, 2019, 13(8):9449.
DOI URL |
[40] |
KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369(6506):979.
DOI PMID |
[41] |
MAO K, SHI J, ZHANG Q, et al. High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy, 2022, 103:107791.
DOI URL |
[42] |
LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 2018, 57(21):6115.
DOI URL |
[43] |
GONG S, ZHAO F, XU H, et al. Iodine-functionalized titanium carbide MXene with ultra-stable pseudocapacitor performance. Journal of Colloid and Interface Science, 2022, 615:643.
DOI PMID |
[44] |
NASRIN K, SUDHARSHAN V, SUBRAMANI K, et al. In-situ synergistic 2D/2D MXene/BCN heterostructure for superlative energy density supercapacitor with super-long life. Small, 2022, 18(4):2106051.
DOI URL |
[45] |
吕通, 张恩爽, 原因, 等. 大片单层低缺陷MXene的制备及其膜材料的电磁屏蔽性能. 高等学校化学学报, 2019, 40(10): 2059.
DOI |
[46] |
YANG F, HEGH D, SONG D, et al. Synthesis of nitrogen-sulfur co-doped Ti3C2Tx MXene with enhanced electrochemical properties. Materials Reports: Energy, 2022, 2(1):100079.
DOI URL |
[47] |
WEN Y, RUFFORD T E, CHEN X, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38:368.
DOI URL |
[48] |
YANG F, HEGH D, SONG D, et al. A nitrogenous pre-intercalation strategy for the synthesis of nitrogen-doped Ti3C2Tx MXene with enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2021, 9(10):6393.
DOI URL |
[49] |
YOON Y, LEE M, KIM S K, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high- performance supercapacitor electrodes. Advanced Energy Materials, 2018, 8(15):1703173.
DOI URL |
[50] |
LEE J B, CHOI G H, YOO P J. Oxidized-co-crumpled multiscale porous architectures of MXene for high performance supercapacitors. Journal of Alloys and Compounds, 2021, 887:161304.
DOI URL |
[51] |
YAO M, CHEN Y, WANG Z, et al. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors. Chemical Engineering Journal, 2020, 395:124057.
DOI URL |
[52] |
GUAN G, LI P, SHI X, et al. Electrode based on porous MXene nanosheets for high-performance supercapacitor. Journal of Alloys and Compounds, 2022, 924:166647.
DOI URL |
[53] |
ZHENG X. Enhancing the ion accessibility of Ti3C2Tx MXene films by femtosecond laser ablation towards high-rate supercapacitors. Journal of Alloys and Compounds, 2022, 899:163275.
DOI URL |
[54] |
WANG S, ZHAO S, GUO X, et al. 2D Material-based heterostructures for rechargeable batteries. Advanced Energy Materials, 2022, 12(4):2100864.
DOI URL |
[55] |
DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Advanced Materials, 2019, 31(43):1902432.
DOI URL |
[56] |
ZHU Z, WANG Z, BA Z, et al. 3D MXene-holey graphene hydrogel for supercapacitor with superior energy storage. Journal of Energy Storage, 2022, 47:103911.
DOI URL |
[57] |
WANG Y, WANG X, LI X, et al. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Advanced Functional Materials, 2019, 29(14):1900326.
DOI URL |
[58] |
GUO J, ZHAO Y, LIU A, et al. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochimica Acta, 2019, 305:164.
DOI URL |
[59] |
GUO T, ZHOU D, PANG L, et al. Sandwich-type macroporous Ti3C2Tx MXene frameworks for supercapacitor electrode. Scripta Materialia, 2022, 213:114590.
DOI URL |
[60] | MURALI G, RAWAL J, MODIGUNTA J K R, et al. A review on MXenes: new-generation 2D materials for supercapacitors. Sustainable Energy & Fuels, 2021, 5(22):5672. |
[61] |
LUO W, WEI Y, ZHUANG Z, et al. Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochimica Acta, 2022, 406:139871.
DOI URL |
[62] |
GUO H, ZHANG J, YANG F, et al. Sandwich-like porous MXene/ Ni3S4/CuS derived from MOFs as superior supercapacitor electrode. Journal of Alloys and Compounds, 2022, 906:163863.
DOI URL |
[63] |
GUO H, ZHANG J, XU M, et al. Zeolite-imidazole framework derived nickel-cobalt hydroxide on ultrathin MXene nanosheets for long life and high performance supercapacitance. Journal of Alloys and Compounds, 2021, 888:161250.
DOI URL |
[64] |
LIU X, LU Z, HUANG X, et al. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors. Journal of Power Sources, 2021, 516:230682.
DOI URL |
[65] |
XU J, ZHU J, GONG C, et al. Achieving high yield of Ti3C2T MXene few-layer flakes with enhanced pseudocapacior performance by decreasing precursor size. Chinese Chemical Letters, 2020, 31(4):1039.
DOI URL |
[66] |
LUO S, PATOLE S, ANWER S, et al. Tensile behaviors of Ti3C2Tx (MXene) films. Nanotechnology, 2020, 31(39):395704.
DOI URL |
[67] | MALESKI K, REN C E, ZHAO M Q, et al. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Applied Materials & Interfaces, 2018, 10(29):24491. |
[68] |
LI X, MA Y, SHEN P, et al. Self‐healing microsupercapacitors with size-dependent 2D MXene. ChemElectroChem, 2020, 7(3):821.
DOI URL |
[69] |
SUN J, LIU Y, HUANG J, et al. Size-refinement enhanced flexibility and electrochemical performance of MXene electrodes for flexible waterproof supercapacitors. Journal of Energy Chemistry, 2021, 63:594.
DOI URL |
[70] |
HUANG X, HUANG J, YANG D, et al. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Advanced Science, 2021, 8(18):2101664.
DOI URL |
[71] |
XIA Y, MATHIS T S, ZHAO M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557(7705):409.
DOI |
[72] |
YU J, ZENG M, ZHOU J, et al. A one-pot synthesis of nitrogen doped porous MXene/TiO2 heterogeneous film for high-performance flexible energy storage. Chemical Engineering Journal, 2021, 426:130765.
DOI URL |
[73] |
TIAN Y, QUE B, LUO Y, et al. Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity. Journal of Power Sources, 2021, 495:229790.
DOI URL |
[74] |
WANG J, GONG J, ZHANG H, et al. Construction of hexagonal nickel-cobalt oxide nanosheets on metal-organic frameworks based on MXene interlayer ion effect for hybrid supercapacitors. Journal of Alloys and Compounds, 2021, 870:159466.
DOI URL |
[75] |
FAN Z, WANG Y, XIE Z, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Advanced Science, 2018, 5(10):1800750.
DOI URL |
[76] |
YANG L, ZHENG W, ZHANG P, et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2018, 830-831:1.
DOI URL |
[77] |
GUO Z, LI Y, LU Z, et al. High-performance MnO2@MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors. Journal of Materials Science, 2022, 57(5):3613.
DOI |
[78] |
SHEN B, LIAO X, ZHANG X, et al. Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors. Electrochimica Acta, 2022, 413:140144.
DOI URL |
[79] |
ZHANG Y, CAO J, YUAN Z, et al. Assembling Co3O4 nanoparticles into MXene with enhanced electrochemical performance for advanced asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 599:109.
DOI URL |
[80] |
XIA Q, CAO W, XU F, et al. Assembling MnCo2O4 nanoparticles embedded into MXene with effectively improved electrochemical performance. Journal of Energy Storage, 2022, 47:103906.
DOI URL |
[81] |
MAHMOOD M, CHAUDHARY K, SHAHID M, et al. Fabrication of MoO3 nanowires/MXene@CC hybrid as highly conductive and flexible electrode for next-generation supercapacitors applications. Ceramics International, 2022, 48(13):19314.
DOI URL |
[82] |
LIU H, HU R, QI J, et al. One‐step synthesis of nanostructured CoS2 grown on titanium carbide MXene for high‐performance asymmetrical supercapacitors. Advanced Materials Interfaces, 2020, 7(6):1901659.
DOI URL |
[83] |
LI H, CHEN X, ZALNEZHAD E, et al. 3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 2020, 82:309.
DOI URL |
[84] |
XU J, YANG X, ZOU Y, et al. High density anchoring of NiMoS4 on ultrathin Ti3C2 MXene assisted by dopamine for supercapacitor electrode materials. Journal of Alloys and Compounds, 2022, 891:161945.
DOI URL |
[85] |
LIU Y, GONG J, WANG J, et al. Facile fabrication of MXene supported nickel-cobalt selenide ternary composite via one-step hydrothermal for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 899:163354.
DOI URL |
[86] |
KARKUZHALI R, MANOJ S, SHANMUGAPRIYA K, et al. MXene-based O/Se-rich bimetallic nanocomposites for high performance solid-state symmetric supercapacitors. Journal of Solid State Chemistry, 2022, 306:122727.
DOI URL |
[87] |
LI C, WANG S, CUI Y, et al. Sandwich-like high-load MXene/polyaniline film electrodes with ultrahigh volumetric capacitance for flexible supercapacitors. Journal of Colloid and Interface Science, 2022, 620:35.
DOI PMID |
[88] |
ZHANG X, YANG S, LU W, et al. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. Journal of Colloid and Interface Science, 2021, 592:95.
DOI PMID |
[89] |
XIA Q X, SHINDE N M, YUN J M, et al. Bismuth oxychloride/ MXene symmetric supercapacitor with high volumetric energy density. Electrochimica Acta, 2018, 271:351.
DOI URL |
[90] |
YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 2017, 27(30):1701264.
DOI URL |
[91] |
LIAN S, LI G, SONG F, et al. Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium- and potassium-ion storage. Journal of Alloys and Compounds, 2022, 901:163426.
DOI URL |
[92] | BAI T, WANG W, XUE G, et al. Free-standing, flexible carbon@MXene films with cross-linked mesoporous structures toward supercapacitors and pressure sensors. ACS Applied Materials & Interfaces, 2021, 13(48):57576. |
[93] |
ZHANG D, LUO M, YANG K, et al. Porosity-adjustable MXene film with transverse and longitudinal ion channels for flexible supercapacitors. Microporous and Mesoporous Materials, 2021, 326:111389.
DOI URL |
[94] |
ZHU M, HUANG Y, DENG Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Advanced Energy Materials, 2016, 6(21):1600969.
DOI URL |
[95] | KAUSAR A. Polymer/MXene nanocomposite-a new age for advanced materials. Polymer-Plastics Technology and Materials, 2021, 60:1377. |
[96] |
RUAN C, ZHU D, QI J, et al. MXene-modulated CoNi2S4 dendrite as enhanced electrode for hybrid supercapacitors. Surfaces and Interfaces, 2021, 25:101274.
DOI URL |
[97] |
SHI T Z, FENG Y L, PENG T, et al. Sea urchin-shaped Fe2O3 coupled with 2D MXene nanosheets as negative electrode for high-performance asymmetric supercapacitors. Electrochimica Acta, 2021, 381:138245.
DOI URL |
[98] |
GENG P, ZHENG S, TANG H, et al. Transition metal sulfides based on graphene for electrochemical energy storage. Advanced Energy Materials, 2018, 8(15):1703259.
DOI URL |
[99] |
HE Z, WANG Y, LI Y, et al. Superior pseudocapacitive performance and mechanism of self-assembled MnO2/MXene films as positive electrodes for flexible supercapacitors. Journal of Alloys and Compounds, 2022, 899:163241.
DOI URL |
[100] |
CHEN X, DING Z, YU H, et al. Facile fabrication of CuCo2S4 nanoparticles/MXene composite as anode for high-performance asymmetric supercapacitor. Materials Chemistry Frontiers, 2021, 5:7606.
DOI URL |
[101] |
LIU Y T, ZHANG P, SUN N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Advanced Materials, 2018, 30(23):1707334.
DOI URL |
[102] |
LI H, LIU Y, LIN S, et al. Laser crystallized sandwich-like MXene/Fe3O4/MXene thin film electrodes for flexible supercapacitors. Journal of Power Sources, 2021, 497:229882.
DOI URL |
[103] |
WANG X, SONG H, MA S, et al. Template ion-exchange synthesis of Co-Ni composite hydroxides nanosheets for supercapacitor with unprecedented rate capability. Chemical Engineering Journal, 2022, 432:134319.
DOI URL |
[104] |
MAHMOOD M, ZULFIQAR S, WARSI M F, et al. Nanostructured V2O5 and its nanohybrid with MXene as an efficient electrode material for electrochemical capacitor applications. Ceramics International, 2022, 48(2):2345.
DOI URL |
[105] |
FAN Z, WANG Y, XIE Z, et al. A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale, 2018, 10(20):9642.
DOI PMID |
[1] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[2] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[3] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[4] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[8] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[9] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[10] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[11] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[12] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[13] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[14] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||