[1] Yürüm Y, Taralp A, Veziroglu T N. Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy, 2009, 34(9): 3784-3798.[2] TANG Shui-Hua, SUN Gong-Quan, QI Jing, et al. New carbon materials as catalyst supports in direct alcohol fuel cells. Chinese Journal of Catalysis, 2010, 31(1): 12-17.[3] Zhao Y F, Wang W, Xiong D B, et al. Titanium carbide derived nanoporous carbon for supercapacitor applications. International Journal of Hydrogen Energy, 2012, 37(24): 19395-19400.[4] ZHAO Jiang-Hong, LIU Zhen-Yu. Effect of carbon support on CuO /AC(F) catalyst-sorbents used for catalytic dry oxidation of phenol. New Carbon Materials, 2005, 20(2): 115-121.[5] Cheng G, Long D H, Liu X J, et al. Fabrication of hierarchical porous carbide-derived carbons by chlorination of mesoporous titanium carbides. New Carbon Materials, 2009, 24(3): 243-250.[6] Sun G W, Song W H, Liu X J, et al. New concept of in situ carbide-derived carbon/xerogel nanocomposite materials for electrochemical capacitor. Materials Letters, 2011, 65(9): 1392-1395.[7] Wang H L, Gao Q M. Synthesis, characterization and energy-related applications of carbide-derived carbons obtained by the chlorination of boron carbide. Carbon, 2009, 47(3): 820-828.[8] Presser V, Heon M, Gogotsi Y. Carbide-derived carbons–from porous networks to nanotubes and graphene. Advanced Functional Materials, 2011, 21(5): 810-833.[9] Urbonaite S, Juárez-Galán Jv M, Leis J, et al. Porosity development along the synthesis of carbons from metal carbides. Microporous and Mesoporous Materials, 2008, 113(1/2/3): 14-21.[10] Urbonaite S, Wachtmeister S, Mirguet C, et al. EELS studies of carbide derived carbons. Carbon, 2007, 45(10): 2047-2053.[11] Hoffman E N, Yushin G, El-Raghy T, et al. Micro and mesoporosity of carbon derived from ternary and binary metal carbides. Microporous and Mesoporous Materials, 2008, 112(1/2/3): 526-532.[12] Zhang B F, Wang S, Li W, et al. Mechanical behavior of C/SiC composites under simulated space environments. Materials Science and Engineering A, 2012, 534: 408-412.[13] Yu H J, Zhou X G, Zhang W, et al. Properties of carbon nano-tubes-C(f)/SiC composite by precursor infiltration and pyrolysis process. Materials and Design, 2011, 32(6): 3516-3520.[14] Ma Q S, Chen Z H. Electrical resistivity of silicon oxycarbide ceramics fabricated via polysiloxane pyrolysis. Rare Metal Materials and Engineering, 2007, 36(Suppl.1): 619-621.[15] Liu H T, Cheng H F, Wang J, et al. Effects of the SiC powder contents on the mechanical properties of the 2D-SiC(f)/SiC composites fabricated via precursor infiltration pyrolysis process. Rare Metal Materials and Engineering, 2009, 38(Suppl.2): 454-457.[16] Yeon S H. Reddington P, Gogotsi Y, et al. Cabide-derived-carbons with hierarchical porosity from a preceramic polymer. Carbon, 2010, 48(1): 201-210.[17] Vakifahmetoglu C, Presser V, Yeon S H, et al. Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon. Microporous and Mesoporous Materials, 2011, 144(1/2/3): 105-112.[18] Batisse N, Guérin K, Dubois M, et al. Fluorination of silicon carbide thin -lms using pure F2 gas or XeF2. Thin Solid Films, 2010, 518(23): 6746-6751.[19] Batisse N, Guérin K, Dubois M, et al. The synthesis of microporous carbon by the -uorination of titanium carbide. Carbon, 2011, 49(9): 2998-3009.[20] Cambaz Z G, Yushin G N, Gogotsi Y, et al. Formation of carbide- derived carbon on b-silicon carbide whiskers. Journal of the American Ceramic Society, 2006, 89(2): 509-514.[21] Kormann M, Ghanem H, Gerhard H, et al. Processing of carbide-derived carbon (CDC) using biomorphic porous titanium carbide ceramics. Journal of the European Ceramic Society, 2008, 28(6): 1297-1303.[22] Portet C, Kazachkin D, Osswald S, et al. Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons. Thermochim Acta, 2010, 497(1/2): 137-142.[23] Kormann M, Popovska N. Processing of carbide-derived carbons with enhanced porosity by activation with carbon dioxide. Microporous and Mesoporous Materials, 2010, 130(1/2/3): 167-173.[24] Yeon S H, Osswald S, Gogotsi Y, et al. Enhanced methane storage of chemically and physically activated carbide-derived carbon. Journal of Power Sources, 2009, 191(2): 560-567.[25] Gogotsi Y, Portet C, Osswald S, et al. Importance of pore size in high-pressure Hydrogen storage by porous carbons. International Journal of Hydrogen Energy, 2009, 34(15): 6314-6319.[26] Schmirler M, Glenk F, Etzold B J M. In-situ thermal activation of carbide-derived carbon. Carbon, 2011, 49(11): 3679-3686.[27] Krawiec P, Kockrick E, Borchardt L, et al. Ordered mesoporous carbide derived carbons: novel materials for catalysis and adsorption. Journal of Physical and Chemistry C, 2009, 113(18): 7755-7761.[28] Kockrick E, Schrage C, Borchardt L, et al. Ordered mesoporous carbide derived carbons for high pressure gas storage. Carbon, 2010, 48(6): 1707-1717.[29] Oschatz M, Kockrick E, Rose M, et al. A cubic odered, mesoporous carbide-derived carbon for gas and energy storage applications. Carbon, 2010, 48(14): 3987-3992.[30] Seredych M, Portet C, Gogotsi Y, et al. Nitrogen modi-ed carbide- derived carbons as adsorbents of hydrogen sul-de. Journal of Colloid and Interface Science, 2009, 330(1): 60-66.[31] Jeong J H, Bae H T, Lim D S. The effect of iron catalysts on the microstructure and tribological properties of carbide-derived carbon. Carbon, 2010, 48(12): 3628-3634.[32] K--rik M, Arulepp M, Karelson M, et al. The effect of graphitization catalyst on the structure and porosity of SiC derived carbons. Carbon, 2008, 46(12): 1579-1587.[33] Chmiola J, Yushin G, Dash R, et al. Effect of pore size and surface area of carbide derived carbons on speci-c capacitance. Journal of Power Sources, 2006, 158(1): 765-772.[34] Dash R, Chmiola J, Yushin G, et al. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon, 2006, 44(12): 2489-2497.[35] Bhatia S K, Nguyen T X. Potential of silicon carbide-derived carbon for carbon capture. Industrial and Engineering Chemistry Research, 2011, 50(17): 10380–10383.[36] Schlangea A, Rodolfo dos Santosa A, Hasseb B, et al. Titanium carbide-derived carbon as a novel support for platinum catalysts in direct methanol fuel cell application. Journal of Power Sources, 2012, 199: 22-28.[37] McNallan M, Ersoy D, Zhu R, et al. Nano-structured carbide- derived carbon films and their tribology. Tsinghua Science and Technology, 2005, 10(6): 699-703.[38] Yushin G, Hoffmana E N, Barsoum M W, et al. Mesoporous carbide- derived carbon with porosity tuned for ef-cient adsorption of cytokines. Biomaterials, 2006, 27(34): 5755-5762.[39] Yachamaneni S, Yushin G, Yeon S H, et al. Mesoporous carbide- derived carbon for cytokine removal from blood plasma. Biomaterials, 2010, 31(18): 4789-4794. |