|  [1] YAN Hai-Xue, LI Cheng-En, ZHOU Jia-Guang, et al. Structures and properties of bismuth layer-structured piezoelectric ceramics with high Tc. Journal of Inorganic Materials, 2000, 15(2): 209-220. [2] 范素华, 张丰庆, 胡广达, 等. 烧结温度对CaBi4Ti4O15陶瓷电性能的影响. 人工晶体学报, 2007, 36(2): 396-399. [3] Wang C M, Zhang S J, Wang J F, et al. Electromechanical properties of calcium bismuth niobate (CaBi2Nb2O9) ceramics at elevated temperature. Materials Chemistry and Physics, 2009, 118(1): 21-24.[4] Wang C M, Wang J F, Zheng L M, et al. Enhancement of the piezoelectric properties of sodium lanthanum bismuth titanate (Na0.5La0.5Bi4Ti4O15) through modification with cobalt. Materials Science and Engineering B, 2010, 171(1/2/3): 79-85.[5] Gai Z G, Wang J F, Sun W B, et al. Ultrahigh temperature Bi3Ti0.96Sc0.02Ta0.02NbO9-based piezoelectric ceramics. Journal of Applied Physics, 2008, 104(2): 4106-4109.[6] GU Da-Guo, LI Guo-Rong, ZHENG Liao-Ying, et al. Electrical properties of Mn-modified CaBi4Ti4O15 piezoelectrics for high temperature application. Journal of Inorganic Materials, 2008, 23(3): 626-630. [7] ZHANG Li-Na, LI Guo-Rong, ZHAO Su-Chuan, et al. Electrical behavior of Nb-doped Bi4Ti3O12 layer-structured ferroelectric ceramics. Journal of Inorganic Materials, 2005, 20(6): 1389-1395. [8] JIANG Xiang-Ping, YANG Qing, CHEN Chao, et al. Nb-modified Bi4Ti3O12 piezoelectric for high temperature applications. Journal of Inorganic Materials, 2010, 25(11): 1169-1174.[9] Nagata H, Matsuzawa S, Tokutsu T, et al Temperature dependence of piezoelectric properties on Nd and V co-substituted Bi4Ti3O12 ceramics for ceramic resonator applications. Ceramics International, 2009, 35(1): 163-167.[10] Yokoi A, Masumoto H, Sugishita J. Phase transition-crystal structure relations in ferroelectric Bi2.5Na1.5Nb3O12 compound by molecular dynamics simulation. Materials Chemistry and Physics, 2009, 116(1): 16-20.[11] Huang X Y, Chen Z G, Zhen X L, et al. Dielectric and piezoelectric Properties of Ca1-x(Li, Ce)x/2Bi4Ti4O15 ceramics. Journal of Rare Metals. Spl., 2007, 25(1): 158--62.[12] Rintaro Aoyagi, Hiroaki Takeda, Soichiro Okamura, et al. Synthesis and electrical properties of sodium bismuth niobate Na0.5Bi2.5Nb2O9. Materials Research Bulletin, 2003(38): 25-32.[13] Hou Y D, Zhu M K, Gao F, et al. Piezoelectric properties of new MnO2-added 0.2 PZN–0.8 PZT ceramic. J. Am. Ceram. Soc., 2004, 87(5): 847-850.[14] Nagata H, Takenaka T J. Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. Euro. Ceram. Soc., 2001, 21(10/11): 1299-1302.[15] Zhang S J, Eitel R E, Randall C A, et al. Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl. Phys. Lett., 2005, 86(26): 62904.[16] Szwagierczak D, Kulawik J J. Influence of MnO2 and Co3O4 dopants on dielectric properties of Pb(Fe2/3W1/3)O3 ceramics. Euro. Ceram. Soc., 2005, 25(9): 1657-1662.[17] Matsushita Mitsuhiro, Aoyagi Rintaro, Takeda Hiroaki, et al. Piezoelectric properties of sodium bismuth tantalate Na0.5Bi2.5- Ta2O9 dense ceramics. Japanese Journal of Applied Physics, 2004, 43(10): 7164-7168.[18] Gao Daojiang, Kwok K W, Lin Dunmin. Microstructure, piezoelectric and ferroelectric properties of Mn-added Na0.5Bi4.5Ti4O15 ceramics. Current Applied Physic, 2011, 11(3): 124-127.[19] Kano J,-Yin Q R,--Kojima S,--et al. Vibrational and dielectric properties of MnO2-doped bismuth layered-structure ferroelectrics . Applications of Ferroelectrics, 2007, 16: 478-480.[20] Gai Zhi-Gang, Wang Jin-Feng, Zhao Ming-Lei, et al. High temperature (NaBi)0.48□0.04Bi2Nb2O9-based piezoelectric ceramics. Appl. Phys. Lett., 2006, 89(20): 012907-1-3.[21] Jiang Xiang-Ping, Yang Qing, Chen Chao, et al Microstructure and properties of high-temperature materials (1-x)Na0.5Bi2.5Nb2O9- xLiNbO3. J. Am. Ceram. Soc., 2010, 493:276-280.[22] Wang C M, Wang J F, Zhang S J, et al. Electromechanical properties of  A-site (Li Ce) modified sodium bismuth titanate  (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature. J. Appl. Phys., 2009, 105(9): 094110---5.[23] Wang C. M., Wang J. F. High performance aurivillius phase sodium- potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification. Appl. Phys. Lett., 2006, 89(20): 202905-1-3. [24] Gai Zhi-Gang, Feng Yuan-Yuan, Wang Jin-Feng, et al. The effect of (Li,Ce) doping in Aurivillius phase material (Na0.52K0.42Li0.06)0.5Bi2.5(Nb1.88Sb0.06Ta0.06)O9. Phys. Status Solidi A, 2010, 207(8):1792-1795. [25] Chiheb Chaker, Najmeddine Abdelmoulaa, Yaovi Gagoub, et al. Study of the Na1-xBixNb1-xMnxO3 ceramics by X-ray diffraction, dielectric and Raman spectroscopy. Solid State Communications, 2011, 151: 763-767.[26] 杜红亮, 杜红娜, 周万城, 等(DU Hong-Liang, et al). 锰掺杂对PNW-PMS-PZT压电陶瓷结构和性能的影响. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2005, 33(6): 777-779.[27] Li G R, Zheng L Y, Yin Q R. Microstructure, domain morphology and piezoelectric properties of Si-doped Pb(Mn1/3Sb2/3)O3- Pb(Zr,Ti)O3 systems. J. Appl. Phys., 2005, 119(1): 46-50.[28] Zhang Xiaodong, Yan Haixue, Michael J. Reece. Effect of A site substitution on the properties of CaBi2Nb2O9 ferroelectric ceramics. J. Am. Ceram. Soc., 2008, 91(9): 2928-2932.[29] Santos A M, Parashar S, Raju A R, et al. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Communications, 2002, 122(1/2): 49-52.[30] Chen Q, Xu Z J, Chu R Q, et al. Ferroelectric and dielectric properties of Sr2-x(Na, K)xBi4Ti5O18. lead-free piezoelectric ceramics. Physica B: Condensed Matter, 2010, 405(13): 2781-2784. |