Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (6): 561-570.DOI: 10.3724/SP.J.1077.2014.13551
• Orginal Article • Next Articles
CHEN Wei, LIU Yang-Qiao, LUO Jian-Qiang, JIN Xi-Hai, SUN Jing, GAO Lian
Received:
2013-10-25
Revised:
2013-12-06
Published:
2014-06-14
Online:
2014-05-27
About author:
CHEN Wei. E-mail: sheldon_cw@student.sic.ac.cn
Supported by:
CLC Number:
CHEN Wei, LIU Yang-Qiao, LUO Jian-Qiang, JIN Xi-Hai, SUN Jing, GAO Lian. Fabrications of TiO2Photoanodes for Flexible Dye-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2014, 29(6): 561-570.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 HR-TEM images of the microstructure of the interparticle connections between the P25 particles (a) and the smaller nanoglue particles (b)[10] (a) Image of nanoglue TiO2 particles located in between the P25 partcles; (b) Boundaries of the nanoglue and P25 particles with arrows
Fig. 4 Relationship between the pressure applied to the TiO2 film and the performance of the fabricated plastic-substrate DSC (a) and transmittance of ITO-PEN films with and without an AR film (b)[21]
Fig. 7 XRD patterns of the as-deposited ALD TiO2 overlayer of three different thicknesses (5, 10 and 15 nm) on 3 μm mesoporous SiO2 films[31] The inset schematic depicts the ALD TiO2 deposited on a silica mesoporous template with the dashed lines indicating the electron transport pathways
Fig. 8 Digital photograph of a prototype DSPVW and its schematic cross section (a), top view (b) and cross-sectional (c) FESEM images of TiO2 nanotube arrays grown around a Ti wire fabricated by anodization at 60 V for 12 h[45]
Fig. 9 Illustration of the designed fabrication and transfer procedure using free-standing film method (A) and cross-sec-tional FESEM mage of a piece of free-standing flexible TiO2 nanowire film (B) (inset figure), showing layered structure with small and big NWs on the top and bottom, respectively[53]
[1] | O'REGAN B,GRÄZTEL M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 354(24): 737-740. |
[2] | YELLA A, LEE H W, TSAO H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12% efficiency. Science, 2011, 334(6056): 629-634. |
[3] | MIYASAKA T. Toward printable sensitized mesoscopic solar cells: light-harvesting management with thin TiO2 films. J. Phys. Chem. Lett., 2011, 2: 262-269. |
[4] | HASHMI G, MIETTUNEN K, PELTOLA T, et al. Review of materials and manufacturing options for large area flexible dye solar cells. Renewable Sustainable Energ. Rev., 2011, 15(8): 3717-3732. |
[5] | SÖDERGREN S, HAGFELDT A, OLSSON J, et al. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem., 1994, 98(21): 5552-5556. |
[6] | BISQUERT J. Physical electrochemistry of nanostructured devices. Phys. Chem. Chem. Phys., 2008, 10: 49-72. |
[7] | NAKADE S, MATSUDA M, KAMBE S, et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B, 2002, 106: 10004-10010. |
[8] | LONGO C, NOGUEIRA A F, PAOLI M-A DE, et al. Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. J. Phys. Chem. B, 2002, 106(23): 5925-5930. |
[9] | ZHANG D S, YOSHIDA T, FURUTA K, et al. Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells.. J. Photochem. Photobiol A Chem., 2004, 164(1): 159-166. |
[10] | LI Y L, LEE W, LEE D, et al. Pure anatase TiO2 “nanoglue”: an inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells. Appl. Phys. Lett., 2011, 98(10): 103301-103303. |
[11] | CHEN W, LIU Y Q, LUO J Q, et al. A bifunctional TiO2 sol for convenient low-temperature fabrication of dye-sensitized solar cells. Mater. Lett., 2012, 67(1): 60-63. |
[12] | LIU FENG-JUAN,SHAO JING-ZHEN,DONG WEI-WEI, et al. Optimization of photoelectrode for flexible dye-sensitized solar cell and preliminary study of tandem cell. Journal of Inorganic Materials, 2013, 28(5): 527-531. |
[13] | PARK N G, KIM K M, KANG M G, et al. Chemical sintering of nanoparticles: a methodology for low-temperature fabrication of dye-sensitized TiO2 films. Adv. Mater., 2005, 17: 2349-2353. |
[14] | PASQUIER A D, STEWART M, SPITLER T, et al. Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes . Solar Energ.Mat. Solar C, 2009, 93(4): 528-535. |
[15] | WEERASINGHE H C, SIRIMANNE P M, FRANKS G V, et al. Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells. J. Photochem. Photobiol.A Chem., 2010, 213(1): 30-36. |
[16] | BENKSTEIN K D, KOPIDAKIS N, LAGEMAAT J, et al. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B, 2003, 107: 7759-7767. |
[17] | OFIR A, DOR S, GRINIS L, et al. Porosity dependence of electron percolation in nanoporous TiO2 layers. J. Chem. Phys., 2008, 128: 064703-064711. |
[18] | LINDSTRÖM H, HOLMBERG A, MAGNUSSON E, et al. A new method to make dye-sensitized nanocrystalline solar cells at room temperature.. J. Photochem. Photobiol. A Chem., 2001, 145: 107-112. |
[19] | LINDSTRÖM H, HOLMBERG A, MAGNUSSON E, et al. A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett., 2001, 1(2): 97-100. |
[20] | YAMAGUCHI T, TOBE N, MATSUMOTO D, et al. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes. Chem. Commun., 2007(45): 4767-4769. |
[21] | YAMAGUCHI T, TOBE N, MATSUMOTO D, et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol. Energ. Mat. Sol. C, 2010, 94(5): 812-816. |
[22] | GRINIS L, KOTLYAR S, RÜHLE S, et al. Conformal nano-sized inorganic coatings on mesoporous TiO2 films for low-temperature dye-sensitized solar cell fabrication. Adv. Funct. Mater., 2010, 20(2): 282-288. |
[23] | TSUTOMU M, YUJIRO K, TAKUROU N, et al. Effcient nonsintering type dye-sensitized photocells based on electrophor¬etically deposited TiO2 layers. Chem. Lett., 2002(12): 1250-1251. |
[24] | YUM J H, KIM S S, KIM D Y, et al. Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells. J. Photochem. Photobiol.A Chem., 2005, 173(1): 1-6. |
[25] | CHIU W H, LEE K M, HSIEH W F. High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions. J.Power Sources, 2011, 196(7): 3683-3687. |
[26] | 邵 芳. 半导体氧化物电极的构建及其在薄膜太阳能电池中的应用. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2013. |
[27] | SINGH A, ENGLISH N J, RYAN K M. Highly ordered nanorod assemblies extending over device scale areas and in controlled multilayers by electrophoretic deposition. J. Phys. Chem. B, 2013, 117: 1608-1615. |
[28] | SUN S R, GAO L, LIU Y Q. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett., 2010, 96(8): 083113-083115. |
[29] | 孙盛睿. 低维碳材料增强染料/量子点敏化太阳能电池的构建及性能研究, 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2010. |
[30] | LEE K, HU C, CHEN H, et al. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Sol. Energ. Mat. Sol. C, 2008, 92(12): 1628-1633. |
[31] | ARAVIND K C, ASWANI Y, MORGAN S, et al. Low-temperature crystalline titanium dioxide by atomic layer deposition for dye sensitized solar cells. ACS Appl. Mater. Inter., 2013, 5: 3487-3493. |
[32] | LEE H, HWANG D, JO S M, et al. Low-temperature fabrication of TiO2 electrodes for flexible dye-sensitized solar cells using an electrospray process. ACS Appl. Mater. Inter., 2012, 4(6): 3308-3315. |
[33] | MURAKAMI T N, KIJITORI Y, KAWASHIMA N, et al. Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation. J. Photochem.Photobiol A Chem., 2004, 164(1/2/3): 187-191. |
[34] | UCHIDA S, TOMIHA M, TAKIZAWA H, et al. Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. J. Photochem. Photobiol.A Chem., 2004, 164(1/2/3): 93-96. |
[35] | ZENG Q H, YU Y, WU L Z, et al. Low-temperature fabrication of flexible TiO2 electrode for dye-sensitized solar cells. Physica Status Solidi (a), 2010, 207(9): 2201-2206. |
[36] | KANG M G, PARK N G, RYU K S, et al. A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate. Sol. Energ. Mat. Sol. C, 2006, 90(5): 574-581. |
[37] | JONG H P, YONGSEOK J, HO-GYEONG Y, et al. Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. J. Electrochem. Soc., 2008, 155(7): F145-F149. |
[38] | ITO S, HA N L C, LISKA P, et al. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocry¬stalline-TiO2 photoanode. Chem. Commun., 2006(38): 4004-4006. |
[39] | ZHENG Q, KANG H, YUN J, et al. Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells. ACS Nano, 2011, 5(6): 5088-5093. |
[40] | KIM J Y, NOH J H, ZHU K, et al. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelec¬trodes: illumination geometry and transport properties. ACS Nano, 2011, 5(4): 2647-2656. |
[41] | LIAO J Y, LEI B X, CHEN H Y, et al. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energ. Environ. Sci., 2012, 5: 5750-5757. |
[42] | XIAO Y M, WU J H, YUE G T, et al. Preparation of a three-dimensional interpenetrating network of TiO2 nanowires for large-area flexible dye-sensitized solar cells. RSC Adv., 2012, 2: 10550-10555. |
[43] | CHEN Y H, HUANG K C, CHEN J G, et al. Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells. Electrochim Acta, 2011, 56(23): 7999-8004. |
[44] | FAN X, CHU Z Z, WANG F Z, et al. Wire-shaped flexible dye-sensitized solar cells. Adv. Mater., 2008, 20(3): 592-595. |
[45] | LIU Z Y, MISRA M. Dye-sensitized photovoltaicwires using highly ordered TiO2 nanotube arrays. ACS Nano, 2010, 4(4): 2196-2200. |
[46] | FAN X, WANG F Z, CHU Z Z, et al. Conductive mesh based flexible dye-sensitized solar cells. Appl. Phys. Lett., 2007, 90(7): 073501-073503. |
[47] | TRANCIK J E, BARTON S C, HONE J. Transparent and catalytic carbon nanotube films. Nano Lett., 2008, 8(4): 982-987. |
[48] | ROY-MAYHEW J D, BOZYM D J, PUNCKT C, et al. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano, 2010, 4(10): 6203-6211. |
[49] | YUM J H, BARANOFF E, KESSLER F, et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature Commun., 2012, 3: 631-638. |
[50] | MIETTUNEN K, RUAN X L, SAUKKONEN T, et al. Stability of dye solar cells with photoelectrode on metal substrates. J. Electro-- chem.Soc., 2010, 157(6): B814-B819. |
[51] | DÜRR M, SCHMID A, OBERMAIER M, et al. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nature Mater., 2005, 4(8): 607-611. |
[52] | KIM C, KIM S, LEE M. Flexible dye-sensitized solar cell fabricated on plastic substrate by laser-detachment and press method. Appl. Surf. Sci., 2013, 270: 462-466. |
[53] | WANG L, XUE Z S, LIU X Z, et al. Transfer of asymmetric free-standing TiO2 nanowire films for high efficiency flexible dye-sensitized solar cells. RSC Adv., 2012, 2(20): 7656-7659. |
[54] | LUO J Q, GAO L, SUN J, et al. A bilayer structure of a titania nanoparticle/highly-ordered nanotube array for low-temperature dye-sensitized solar cells. RSC Adv., 2012, 2: 1884-1889 |
[55] | 罗建强. 多维纳米结构氧化钛的制备及性能研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文,2010. |
[56] | CHA S I, KOO B K, HWANG K H, et al. Spray-dried and pre-sintered TiO2 micro-balls for sinter-free processing of dye- sensitized solar cells. J. Mater. Chem., 2011, 21(17): 6300-6304. |
[57] | HUANG F, CHEN D, LI Q, et al. Construction of nanostructured electrodes on flexible substrates using pre-treated building blocks. Appl. Phys. Lett., 2012, 100: 123102-123105. |
[58] | FAN K, PENG T Y, CHEN J N, et al. Low-cost, quasi-solid-state and TCO-free highly bendable dye-sensitized cells on paper substrate. J. Mater. Chem., 2012, 22(31): 16121-16126. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[5] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[6] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[7] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[8] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[9] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[10] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[11] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[12] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[13] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[14] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[15] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||