Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (6): 561-570.DOI: 10.3724/SP.J.1077.2014.13551
• Orginal Article • Next Articles
CHEN Wei, LIU Yang-Qiao, LUO Jian-Qiang, JIN Xi-Hai, SUN Jing, GAO Lian
Received:
2013-10-25
Revised:
2013-12-06
Published:
2014-06-14
Online:
2014-05-27
About author:
CHEN Wei. E-mail: sheldon_cw@student.sic.ac.cn
Supported by:
CLC Number:
CHEN Wei, LIU Yang-Qiao, LUO Jian-Qiang, JIN Xi-Hai, SUN Jing, GAO Lian. Fabrications of TiO2Photoanodes for Flexible Dye-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2014, 29(6): 561-570.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 HR-TEM images of the microstructure of the interparticle connections between the P25 particles (a) and the smaller nanoglue particles (b)[10] (a) Image of nanoglue TiO2 particles located in between the P25 partcles; (b) Boundaries of the nanoglue and P25 particles with arrows
Fig. 4 Relationship between the pressure applied to the TiO2 film and the performance of the fabricated plastic-substrate DSC (a) and transmittance of ITO-PEN films with and without an AR film (b)[21]
Fig. 7 XRD patterns of the as-deposited ALD TiO2 overlayer of three different thicknesses (5, 10 and 15 nm) on 3 μm mesoporous SiO2 films[31] The inset schematic depicts the ALD TiO2 deposited on a silica mesoporous template with the dashed lines indicating the electron transport pathways
Fig. 8 Digital photograph of a prototype DSPVW and its schematic cross section (a), top view (b) and cross-sectional (c) FESEM images of TiO2 nanotube arrays grown around a Ti wire fabricated by anodization at 60 V for 12 h[45]
Fig. 9 Illustration of the designed fabrication and transfer procedure using free-standing film method (A) and cross-sec-tional FESEM mage of a piece of free-standing flexible TiO2 nanowire film (B) (inset figure), showing layered structure with small and big NWs on the top and bottom, respectively[53]
[1] | O'REGAN B,GRÄZTEL M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 354(24): 737-740. |
[2] | YELLA A, LEE H W, TSAO H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12% efficiency. Science, 2011, 334(6056): 629-634. |
[3] | MIYASAKA T. Toward printable sensitized mesoscopic solar cells: light-harvesting management with thin TiO2 films. J. Phys. Chem. Lett., 2011, 2: 262-269. |
[4] | HASHMI G, MIETTUNEN K, PELTOLA T, et al. Review of materials and manufacturing options for large area flexible dye solar cells. Renewable Sustainable Energ. Rev., 2011, 15(8): 3717-3732. |
[5] | SÖDERGREN S, HAGFELDT A, OLSSON J, et al. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem., 1994, 98(21): 5552-5556. |
[6] | BISQUERT J. Physical electrochemistry of nanostructured devices. Phys. Chem. Chem. Phys., 2008, 10: 49-72. |
[7] | NAKADE S, MATSUDA M, KAMBE S, et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B, 2002, 106: 10004-10010. |
[8] | LONGO C, NOGUEIRA A F, PAOLI M-A DE, et al. Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. J. Phys. Chem. B, 2002, 106(23): 5925-5930. |
[9] | ZHANG D S, YOSHIDA T, FURUTA K, et al. Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells.. J. Photochem. Photobiol A Chem., 2004, 164(1): 159-166. |
[10] | LI Y L, LEE W, LEE D, et al. Pure anatase TiO2 “nanoglue”: an inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells. Appl. Phys. Lett., 2011, 98(10): 103301-103303. |
[11] | CHEN W, LIU Y Q, LUO J Q, et al. A bifunctional TiO2 sol for convenient low-temperature fabrication of dye-sensitized solar cells. Mater. Lett., 2012, 67(1): 60-63. |
[12] | LIU FENG-JUAN,SHAO JING-ZHEN,DONG WEI-WEI, et al. Optimization of photoelectrode for flexible dye-sensitized solar cell and preliminary study of tandem cell. Journal of Inorganic Materials, 2013, 28(5): 527-531. |
[13] | PARK N G, KIM K M, KANG M G, et al. Chemical sintering of nanoparticles: a methodology for low-temperature fabrication of dye-sensitized TiO2 films. Adv. Mater., 2005, 17: 2349-2353. |
[14] | PASQUIER A D, STEWART M, SPITLER T, et al. Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes . Solar Energ.Mat. Solar C, 2009, 93(4): 528-535. |
[15] | WEERASINGHE H C, SIRIMANNE P M, FRANKS G V, et al. Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells. J. Photochem. Photobiol.A Chem., 2010, 213(1): 30-36. |
[16] | BENKSTEIN K D, KOPIDAKIS N, LAGEMAAT J, et al. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B, 2003, 107: 7759-7767. |
[17] | OFIR A, DOR S, GRINIS L, et al. Porosity dependence of electron percolation in nanoporous TiO2 layers. J. Chem. Phys., 2008, 128: 064703-064711. |
[18] | LINDSTRÖM H, HOLMBERG A, MAGNUSSON E, et al. A new method to make dye-sensitized nanocrystalline solar cells at room temperature.. J. Photochem. Photobiol. A Chem., 2001, 145: 107-112. |
[19] | LINDSTRÖM H, HOLMBERG A, MAGNUSSON E, et al. A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett., 2001, 1(2): 97-100. |
[20] | YAMAGUCHI T, TOBE N, MATSUMOTO D, et al. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes. Chem. Commun., 2007(45): 4767-4769. |
[21] | YAMAGUCHI T, TOBE N, MATSUMOTO D, et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol. Energ. Mat. Sol. C, 2010, 94(5): 812-816. |
[22] | GRINIS L, KOTLYAR S, RÜHLE S, et al. Conformal nano-sized inorganic coatings on mesoporous TiO2 films for low-temperature dye-sensitized solar cell fabrication. Adv. Funct. Mater., 2010, 20(2): 282-288. |
[23] | TSUTOMU M, YUJIRO K, TAKUROU N, et al. Effcient nonsintering type dye-sensitized photocells based on electrophor¬etically deposited TiO2 layers. Chem. Lett., 2002(12): 1250-1251. |
[24] | YUM J H, KIM S S, KIM D Y, et al. Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells. J. Photochem. Photobiol.A Chem., 2005, 173(1): 1-6. |
[25] | CHIU W H, LEE K M, HSIEH W F. High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions. J.Power Sources, 2011, 196(7): 3683-3687. |
[26] | 邵 芳. 半导体氧化物电极的构建及其在薄膜太阳能电池中的应用. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2013. |
[27] | SINGH A, ENGLISH N J, RYAN K M. Highly ordered nanorod assemblies extending over device scale areas and in controlled multilayers by electrophoretic deposition. J. Phys. Chem. B, 2013, 117: 1608-1615. |
[28] | SUN S R, GAO L, LIU Y Q. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett., 2010, 96(8): 083113-083115. |
[29] | 孙盛睿. 低维碳材料增强染料/量子点敏化太阳能电池的构建及性能研究, 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2010. |
[30] | LEE K, HU C, CHEN H, et al. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Sol. Energ. Mat. Sol. C, 2008, 92(12): 1628-1633. |
[31] | ARAVIND K C, ASWANI Y, MORGAN S, et al. Low-temperature crystalline titanium dioxide by atomic layer deposition for dye sensitized solar cells. ACS Appl. Mater. Inter., 2013, 5: 3487-3493. |
[32] | LEE H, HWANG D, JO S M, et al. Low-temperature fabrication of TiO2 electrodes for flexible dye-sensitized solar cells using an electrospray process. ACS Appl. Mater. Inter., 2012, 4(6): 3308-3315. |
[33] | MURAKAMI T N, KIJITORI Y, KAWASHIMA N, et al. Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation. J. Photochem.Photobiol A Chem., 2004, 164(1/2/3): 187-191. |
[34] | UCHIDA S, TOMIHA M, TAKIZAWA H, et al. Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. J. Photochem. Photobiol.A Chem., 2004, 164(1/2/3): 93-96. |
[35] | ZENG Q H, YU Y, WU L Z, et al. Low-temperature fabrication of flexible TiO2 electrode for dye-sensitized solar cells. Physica Status Solidi (a), 2010, 207(9): 2201-2206. |
[36] | KANG M G, PARK N G, RYU K S, et al. A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate. Sol. Energ. Mat. Sol. C, 2006, 90(5): 574-581. |
[37] | JONG H P, YONGSEOK J, HO-GYEONG Y, et al. Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. J. Electrochem. Soc., 2008, 155(7): F145-F149. |
[38] | ITO S, HA N L C, LISKA P, et al. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocry¬stalline-TiO2 photoanode. Chem. Commun., 2006(38): 4004-4006. |
[39] | ZHENG Q, KANG H, YUN J, et al. Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells. ACS Nano, 2011, 5(6): 5088-5093. |
[40] | KIM J Y, NOH J H, ZHU K, et al. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelec¬trodes: illumination geometry and transport properties. ACS Nano, 2011, 5(4): 2647-2656. |
[41] | LIAO J Y, LEI B X, CHEN H Y, et al. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energ. Environ. Sci., 2012, 5: 5750-5757. |
[42] | XIAO Y M, WU J H, YUE G T, et al. Preparation of a three-dimensional interpenetrating network of TiO2 nanowires for large-area flexible dye-sensitized solar cells. RSC Adv., 2012, 2: 10550-10555. |
[43] | CHEN Y H, HUANG K C, CHEN J G, et al. Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells. Electrochim Acta, 2011, 56(23): 7999-8004. |
[44] | FAN X, CHU Z Z, WANG F Z, et al. Wire-shaped flexible dye-sensitized solar cells. Adv. Mater., 2008, 20(3): 592-595. |
[45] | LIU Z Y, MISRA M. Dye-sensitized photovoltaicwires using highly ordered TiO2 nanotube arrays. ACS Nano, 2010, 4(4): 2196-2200. |
[46] | FAN X, WANG F Z, CHU Z Z, et al. Conductive mesh based flexible dye-sensitized solar cells. Appl. Phys. Lett., 2007, 90(7): 073501-073503. |
[47] | TRANCIK J E, BARTON S C, HONE J. Transparent and catalytic carbon nanotube films. Nano Lett., 2008, 8(4): 982-987. |
[48] | ROY-MAYHEW J D, BOZYM D J, PUNCKT C, et al. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano, 2010, 4(10): 6203-6211. |
[49] | YUM J H, BARANOFF E, KESSLER F, et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature Commun., 2012, 3: 631-638. |
[50] | MIETTUNEN K, RUAN X L, SAUKKONEN T, et al. Stability of dye solar cells with photoelectrode on metal substrates. J. Electro-- chem.Soc., 2010, 157(6): B814-B819. |
[51] | DÜRR M, SCHMID A, OBERMAIER M, et al. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nature Mater., 2005, 4(8): 607-611. |
[52] | KIM C, KIM S, LEE M. Flexible dye-sensitized solar cell fabricated on plastic substrate by laser-detachment and press method. Appl. Surf. Sci., 2013, 270: 462-466. |
[53] | WANG L, XUE Z S, LIU X Z, et al. Transfer of asymmetric free-standing TiO2 nanowire films for high efficiency flexible dye-sensitized solar cells. RSC Adv., 2012, 2(20): 7656-7659. |
[54] | LUO J Q, GAO L, SUN J, et al. A bilayer structure of a titania nanoparticle/highly-ordered nanotube array for low-temperature dye-sensitized solar cells. RSC Adv., 2012, 2: 1884-1889 |
[55] | 罗建强. 多维纳米结构氧化钛的制备及性能研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文,2010. |
[56] | CHA S I, KOO B K, HWANG K H, et al. Spray-dried and pre-sintered TiO2 micro-balls for sinter-free processing of dye- sensitized solar cells. J. Mater. Chem., 2011, 21(17): 6300-6304. |
[57] | HUANG F, CHEN D, LI Q, et al. Construction of nanostructured electrodes on flexible substrates using pre-treated building blocks. Appl. Phys. Lett., 2012, 100: 123102-123105. |
[58] | FAN K, PENG T Y, CHEN J N, et al. Low-cost, quasi-solid-state and TCO-free highly bendable dye-sensitized cells on paper substrate. J. Mater. Chem., 2012, 22(31): 16121-16126. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | YANG Yan, ZHANG Faqiang, MA Mingsheng, WANG Yongzhe, OUYANG Qi, LIU Zhifu. Low Temperature Sintering of ZnAl2O4 Ceramics with CuO-TiO2-Nb2O5 Composite Oxide Sintering Aid [J]. Journal of Inorganic Materials, 2025, 40(6): 711-718. |
[7] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||