Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (3): 237-244.DOI: 10.3724/SP.J.1077.2014.13185
• Orginal Article • Previous Articles Next Articles
ZHAN Bin1, LAN Jin-Le1, LIU Yao-Chun2, DING Jing-Xuan1, LIN Yuan-Hua1, NAN Ce-Wen1
Received:
2013-04-02
Revised:
2013-05-21
Published:
2014-03-20
Online:
2014-02-18
About author:
ZHAN Bin. E-mail:zhanb10@mails.tsinghua.edu.cn
Supported by:
CLC Number:
ZHAN Bin, LAN Jin-Le, LIU Yao-Chun, DING Jing-Xuan, LIN Yuan-Hua, NAN Ce-Wen. Research Progress of Oxides Thermoelectric Materials[J]. Journal of Inorganic Materials, 2014, 29(3): 237-244.
Add to citation manager EndNote|Ris|BibTeX
[1] | SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed, 2009, 48(46): 8616-8639. |
[2] | SALES B C, MANDRUS D, CHAKOUMAKOS B C, et al. Filled skutterudite antimonides: electron crystals and phonon glasses. Phys. Rev. B, 1997, 56(23): 15081-15089. |
[3] | SAKURADA S, SHUTOH N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett., 2005, 86(8): 082105-1-3. |
[4] | BEEKMAN M, NOLAS G S. Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J. Mater. Chem., 2008, 18(8): 842-851. |
[5] | POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634-638. |
[6] | HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554-557. |
[7] | HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818-821. |
[8] | DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low- dimensional thermoelectric materials. Adv. Mater., 2007, 19(8): 1043-1053. |
[9] | VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597-602. |
[10] | YU B, ZEBARJADI M, WANG H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett., 2012, 12: 2077-2082. |
[11] | XIE H H, WANG H, PEI Y Z, et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials. Adv. Funct. Mater., 2013, 23(41): 5123-5130. |
[12] | DUAN B, ZHAI P C, LIU L S, et al. Benificial effect of Se substitution on thermoelectric properties in Co4Sb12-x-yTexSey skutterudites. AIP Conf. Proc., 2012, 1449: 239-242. |
[13] | DENG L, JIA X P, MA H A, et al. The thermoelectric properties of InxM0.2Co4Sb12 (M=Ba and Pb) double-filled skutterudites. Solid State Communications, 2013, 163: 15-18. |
[14] | POUDEU P F P, D’ANGELO J, DOWNEY A D, et al. High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. Angew. Chem. Int. Ed, 2006, 118(23): 3835-3839. |
[15] | CAILLAT T, FLEURIAL J P, BORSHCHEVSKY A. Preparation and thermoelectricproperties of semiconducting Zn4Sb3. J. Phys. Chem. Solids, 1997, 58(7): 1119-1125. |
[16] | WANG X W, LEE H, LAN Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett, 2008, 93(19): 193121-1-3. |
[17] | WANG Y, SUI Y, CHENG J G, et al. Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9. J. Alloys Compd., 2009, 477(1/2): 817-821. |
[18] | ITO M, FURUMOTO D. Microstructure and thermoelectric properties of NaxCo2O4/Ag composite synthesized by the polymerized complex method. J. Alloys Compd., 2008, 450(1/2): 517-520. |
[19] | KIKUCHI A, OKINAKA N, AKIYAMA T. A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering. Scripta Mater., 2010, 63(4): 407-410. |
[20] | WANG Y, SUI Y, SU W H. High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R= La, Pr, …, Yb). J. Appl. Phys., 2008, 104(9): 93703. |
[21] | OHTAKI M, ARAKI K, YAMAMOTO K. High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater., 2009, 38(7): 1234-1238. |
[22] | LI J, SUI J H, PEI Y L, et al. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci., 2012, 5(9): 8543-8547. |
[23] | KAGA H, ASAHI R, TANI T. Thermoelectric properties of highly textured Ca-doped (ZnO)mIn2O3 ceramics. Jpn. J. Appl. Phys., 2004, 41(2): 37-42. |
[24] | TERASAKI I, SASAGO Y, UCHINOKURA K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B, 1997, 56(20): R12685-R12687. |
[25] | ZHANG J X, ZHANG Q Y, LIU Y Q, et al. Improved Thermoelectric Properties of Ca3-xBaxCo4O9 (x=0~0.4) Bulks by Sol-Gel and SPS Method. Proc 2006 Int Conf Thermoelectrics, IEEE, 2006: 66-69. |
[26] | WANG Y, SUI Y, WANG X J, et al. Enhanced high temperature thermoelectric characteristics of transition metals doped Ca3Co4O9+δ by cold high-pressure fabrication. J. Appl. Phys., 2010, 107(3): 033708-1-9. |
[27] | NAGIRA T, ITO M, KATSUYAMA S, et al. Thermoelectric properties of (Na1-yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01-0.35). J Alloys Compd., 2003, 348(1/2): 263-269. |
[28] | ITO M, NAGIRA T, HARA S. Thermoelectric properties of NaxCo2O4 withrare-earth metals doping preparedby polymerized complex method. J. Alloys Compd., 2006, 408-412: 1217-1221. |
[29] | WANG H C, WANG C L, SU W B, et al. Doping effect of La and Dy on the thermoelectric properties of SrTiO3. J. Am. Ceram. Soc., 2011, 94(3): 838-842. |
[30] | WANG N, HE H C, BA Y S, et al. Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nano- wires addition. J. Ceram. Soc. Jpn., 2010, 118(1383): 1098-1101. |
[31] | WANG Y, SUI Y, WANG X J, et al. Enhancement of thermoelectric ef-ficiency in (Ca,Dy)MnO3-(Ca,Yb)MnO3 solid solutions. Appl. Phys. Lett., 2010, 97(5): 052109-1-3. |
[32] | LAN J L, LIN Y H, FANG H, et al. High-temperature thermoelectric behaviors of fine-grained Gd-doped CaMnO3 ceramics. J. Am. Ceram. Soc., 2010, 93(8): 2121-2124. |
[33] | WIFF J P, KINEMUCHI Y, KAGA H, et al. Correlations between thermoelectric properties and effective mass caused by lattice distortion in Al-doped ZnO ceramics. J. Eur. Ceram. Soc., 2009, 29(8): 1413-1418. |
[34] | KINEMUCHI Y, MIKAMI M, KOBAYASHI K, et al. Thermoelectric properties of nanograined ZnO. J. Electron. Mater., 2010, 39(9): 2059-2063. |
[35] | MA N, LI J F, ZHANG B P, et al. Microstructure and thermoelectric properties of Zn1-xAlxO ceramics fabricated by spark plasma sintering. Journal of Physics and Chemistry of Solids, 2010, 71(9): 1344-1349. |
[36] | LAN J L, LIN Y H, LIU Y, et al. High thermoelectric performance of nanostructured In2O3-based ceramics. J. Am. Ceram. Soc., 2012, 95(8): 2465-2469. |
[37] | EMMANUEL C, SHEKHAR D B, EMMANUEL G, et al. Synthesis of In2-xGexO3 nanopowders for thermoelectric applications. J. Mater. Res., 2012, 27(2): 500-505. |
[38] | LI F, LI J F, ZHAO L D, et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ. Sci., 2012, 5: 7188-7195. |
[39] | ZHAO L D, BERARDAN D, PEI Y L, et al. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl. Phys. Lett., 2010, 97(9): 092118-1-3. |
[40] | OHTA H, SUGIURA K, KOUMOTO K. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem., 2008, 47(19): 8429-8436. |
[41] | KOSHIBAE W, TSUTSUI K, MAEKAWA S. Thermopower in cobalt oxides. Phys. Rev. B, 2000, 62(11): 6869-6872. |
[42] | MASSET A C, MICHEL C, MAIGNAN M, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B, 2000, 62(1): 166-175. |
[43] | KLIE R F, QIAO Q, PAULAUSKAS T, et al. Observations of Co4+ in a higher spin state and the increase in the seebeck coefficient of thermoelectric Ca3Co4O9. Phy. Rev. Lett., 2012, 108(19): 196601-1-3. |
[44] | PRASOETSOPHA N, PINITSOONTORN S, AMORNKITBAMRUNG V. Synthesis and thermoelectric properties of Ca3Co4O9 prepared by a simple thermal hydro-decomposition method. Electronic Materials Letters, 2012, 8(3): 305-308. |
[45] | LIN Y H, LAN J L, SHEN Z J, et al. High-temperature electrical transport behaviors in textured Ca3Co4O9-based polycrystalline ceramics. Applied Physics Letters, 2009, 94(7): 72107. |
[46] | SHIKANO M, FUNAHASHI R. Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett., 2003, 82(12): 1851. |
[47] | LIU Y H, LIN Y H, SHI Z, et al. Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J. Am. Ceram. Soc., 2005, 88(5): 1337-1340. |
[48] | KENFAUI D, BONNEFONT G, CHATEIGNER D, et al. Ca3Co4O9 ceramics consolidated by SPS process: optimisation of mechanical and thermoelectric properties. Materials Research Bulletin, 2010, 45(9): 1240-1249. |
[49] | KWON OJ, JO W, KO KE, et al. Thermoelectric properties and texture evaluation of Ca3Co4O9 prepared by a cost-effective multisheet cofiring technique. J. Mater. Sci., 2011, 46(9): 2887-2894. |
[50] | LIU Y H, LIN Y H, JIANG L, et al. Thermoelectric properties of Bi3+ substituted Co-based misfit-layered oxides. J. Electroceram., 2008, 21(1-4): 748-751. |
[51] | LI S W, FUNAHASHI R, MATSUBARA I, et al. Synthesis and thermoelectric properties of the new oxide materials Ca3-xBixCo4O9+δ (0.0<x<0.75). Chem. Mater., 2000, 12(8): 2424-2427. |
[52] | SONG Y, SUN Q, ZHAO L R, et al. Synthesis and thermoelectric power factor of (Ca0.95Bi0.05)3Co4O9/Ag composites. Mater. Chem. Phys., 2009, 113(2/3): 645-649. |
[53] | SONG Y, NAN C W. High temperature transport properties of Ag-added (Ca0.975La0.025)3Co4O9 ceramics. Physica B, 2011, 406(14): 2919-2923. |
[54] | XU J, WEI C P, JIA K. Thermoelectric performance of textured Ca3-xYbxCo4O9-δ ceramics. J. Alloys. Compd., 2010, 500(2): 227-230. |
[55] | NONG N V, LIU C J, OHTAKI M. High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+δ. J. Alloys Compd., 2011, 509(3): 977-981. |
[56] | FUJISHIRO Y, MIYATA M, AWANO M, et al. Characterization of thermoelectric metal oxide elements prepared by the pulse electric-current sintering method. J. Am. Ceram. Soc., 2004, 87(10): 1890-1894. |
[57] | LIU P S, CHEN G, CUI Y, et al. High temperature electrical conductivity and thermoelectric power of NaxCoO2. Solid State Ionics, 2008, 179(39): 2308-2312. |
[58] | PARK K, KO K Y, KIM J G, et al. Microstructure and high- temperature thermoelectric properties of CuO and NiO co-substituted NaCo2O4. Mater. Sci. Eng. B, 2006, 129(1/2/3): 200-206. |
[59] | SEETAWAN T, AMORNKITBAMRUNG V, BURINPRAKHON T, et al. Thermoelectric power and electrical resistivity of Ag-doped Na1.5Co2O4. J. Alloys Compd., 2006, 407(1/2): 314-317. |
[60] | TSAI P H, ASSADI M, ZHANG T S, et al. Immobilization of Na ions for substantial power factor enhancement: site-specific defect engineering in Na0.8CoO2. J. Phys. Chem. C, 2012, 116(6): 4324-4329. |
[61] | TSAI P H, NORBY T, TAN T T, et al. Correlation of oxygen vacancy concentration and thermoelectric properties in Na0.73CoO2-δ. Appl. Phys. Lett., 2010, 96(14): 141905. |
[62] | WANG L, WANG M, ZHAO D L. Thermoelectric properties of c-axis oriented Ni-substituted NaCoO2 thermoelectric oxide by the citric acid complex method. J. Alloys Compd., 2009, 471(1/2): 519-523. |
[63] | TSAI P H, ZHANG T S, DONELSON R, et al. Power factor enhancement in Zn-doped Na 0.8CoO2. J. Alloys. Compd., 2011, 509(16): 5183-5186. |
[64] | LI N, JIANG Y, LI G H, et al. Self-ignition route to Ag-doped Na1.7Co2O4 and its thermoelectric properties. J. Alloys Compd., 2009, 467(1/2): 444-449. |
[65] | YASUKAWA M, SHIGA Y, KONO T. Electrical conduction and thermoelectric properties of perovskite-type BaBi1-xSbxO3. Solid State Communications, 2012, 152(11): 964-967. |
[66] | SUZUKI T, SAKAI H, TAGUCHI Y, et al. Thermoelectric properties of electron-doped SrMnO3 single crystals with perovskite structure. J. Electronic Materials, 2012, 41(6): 1559-1563. |
[67] | LIU J, WANG C L, PENG H, et al. Thermoelectric properties of Dy-doped SrTiO3 ceramics. J. Electronic Materials, 2012, 41(11): 3073-3076. |
[68] | FUKUYADO J, NARIKIYO K, AKAKI M, et al. Thermoelectric properties of the electron-doped perovskites Sr1-xCaxTi1-yNbyO3. Phys. Rev. B, 2012, 85(7): 75112. |
[69] | HUANG L T, NONG N V, HAN L, et al. High-temperature thermoelectric properties of Ca0.9Y0.1Mn1-xFexO3(0≤x≤0.25). J. Mater. Sci., 2012, 48(7): 2817-2822. |
[70] | MENG X W, HAO S, LI J L, et al. Preparation of Ca0.8Sm0.2MnO3 powders and effects of calcination temperature on structure and electrical property. Powder Technology, 2012, 224: 96-100. |
[71] | MUTA H, KUROSAKI K, YAMANAKA S. Thermoelectric properties of rare earth doped SrTiO3. J. Alloys Compd., 2003, 350(1/2): 292-295. |
[72] | ZHANG L H, TOSHO T, OKINAKA N, et al. Thermoelectric properties of combustion-synthesized lanthanum-doped strontium titanate. Materials Transactions, 2007, 48(5): 1079-1083. |
[73] | OHTA S, NOMURA T, OHTA H, et al. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys., 2005, 97(3): 34106. |
[74] | WANG Y F, LEE K H, HYUGA H, et al. Enhancement of thermoelectric performance in rare earth-doped Sr3Ti2O7 by symmetry restoration of TiO6 octahedra. J. Electroceram., 2010, 24(2): 76-82. |
[75] | LAN J L, LIN Y H, MEI A, et al. High-temperature electric properties of polycrystalline La-doped CaMnO3 Ceramics. J. Mater. Sci. Technol., 2009, 25(4): 535-538. |
[76] | POPULOH S, TROTTMANN M, AGUIRE M H, et al. Nanostructured Nb-substituted CaMnO3 n-type thermoelectric material prepared in a continuous process by ultrasonic spray combustion. J. Mater. Res., 2011, 26(15): 1947-1952. |
[77] | OHTAKI M, TSUBOTA T, EGUCHI K, et al. High-temperature thermoelectric properties of (Zn1-xAlx)O. J. Appl. Phys., 1996, 79(3): 1816-1818. |
[78] | YAMAGUCHI H, CHONAN Y, ODA M, et al. Thermoelectric properties of ZnO ceramics co-doped with Al and transition metals. J. Electron. Mater., 2011, 40(5): 723-727. |
[79] | CHENG H, XU X J, HNG H H, et al. Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceram. Int., 2009, 35(8): 3067-3072. |
[80] | JOOD P, MEHTA R J, ZHANG Y L, et al. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett., 2011, 11(10): 4337-4342. |
[81] | LIU Y, LIN Y H, LAN J L, et al. Thermoelectric Performance of Zn and Nd Co-doped In2O3 ceramics. J. Electronic Materials, 2011, 40(5): 1083-1086. |
[82] | LIU Y, LIN Y H, XU W, et al. High-temperature transport property of In2-xCexO3(0≤x≤0.10) fine grained ceramics. J. Am. Ceram. Soc., 2012, 95(8): 2568-2572. |
[83] | MASUDA Y, OHTA M, SEO W S, et al. Structure and thermoelectric transport properties of isoelectronically substituted (ZnO)5In2O3. J Solid State Chemistry, 2000, 150(1): 221-227. |
[84] | ISOBE S, TANI T, MASUDA Y, et al. Thermoelectric performance of yttrium-substituted (ZnO)5In2O3 improved through ceramic texturing. Jpn. J. Appl. Phys., 2002, 41: 731-732. |
[85] | LI J, SUI J H, BARRETEAU C, et al. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J. Alloys Comp., 2013, 551: 649-653. |
[86] | LIU Y, ZHAO L D, LIU Y C, et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc., 2011, 133(50): 20112-20115. |
[87] | RULEOVA P, DRASAR C, LOSTAK P, et al. Thermoelectric properties of Bi2O2Se. Materials Chemistry and Physics, 2010, 119(1/2): 299-302. |
[88] | SANG H Y, LI J F. Thermoelectric properties of AgSbO3 with defect pyrochlore structure. J. Alloys Compcompd., 2010, 493(1/2): 678-682. |
[89] | LI F, LI J F. Effect of Ni substitution on electrical and thermoelectric properties of LaCoO3 ceramics. Ceram. Int., 2011, 37(1): 105-110. |
[90] | YANAGIYA S I, NONG N V, XU J X, et al. The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate. Materials, 2010, 3(1): 318-328. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[3] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[8] | YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium [J]. Journal of Inorganic Materials, 2025, 40(5): 473-480. |
[9] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[10] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
[11] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[12] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[13] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[14] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[15] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||