Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (7): 819-827.DOI: 10.15541/jim20230597
Special Issue: 【能源环境】燃料电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
YE Zibin(), ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang(
)
Received:
2023-12-27
Revised:
2024-02-18
Published:
2024-07-20
Online:
2024-03-08
Contact:
LIU Jiang, professor. E-mail: Jiangliu@scut.edu.cnAbout author:
YE Zibin (1998-), male, Master candidate. E-mail: 1193676345@qq.com
Supported by:
CLC Number:
YE Zibin, ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang. Preparation and Performances of Tubular Cone-shaped Anode-supported Segmented-in-series Direct Carbon Solid Oxide Fuel Cell[J]. Journal of Inorganic Materials, 2024, 39(7): 819-827.
化学试剂 | 生产公司 | 纯度 |
---|---|---|
NiO | 加拿大Inco公司 | 98% |
YSZ | 宜兴市熠辉耐磨材料有限公司 | 99.9% |
丙烯酰胺 | 上海阿拉丁生化科技有限公司 | 分析纯 |
N, N'-亚甲基双丙烯酰胺 | 上海阿拉丁生化科技有限公司 | 分析纯 |
柠檬酸铵 | 上海麦克林生化科技有限公司 | 分析纯 |
聚乙二醇 | 上海阿拉丁生化科技有限公司 | 99.0% |
邻苯二甲酸二辛酯 | 上海麦克林生化科技有限公司 | 99.0% |
三乙醇胺 | 上海麦克林生化科技有限公司 | 99.0% |
聚乙烯醇缩丁醛 | 上海阿拉丁生化科技有限公司 | 99.0% |
Al2O3 | 淄博信富盟化工有限公司 | 99.0% |
GDC | 中国科学院宁波材料技术与工程研究所 | 99.50% |
银导电胶DAD-87 | 上海合成树脂研究所 | 99.99% |
粒状活性炭 | 上海阿拉丁试剂有限公司 | 触媒载体用 |
碳酸钾 | 上海麦克林生化科技有限公司 | 99% |
Table S1 Raw materials and chemical reagents
化学试剂 | 生产公司 | 纯度 |
---|---|---|
NiO | 加拿大Inco公司 | 98% |
YSZ | 宜兴市熠辉耐磨材料有限公司 | 99.9% |
丙烯酰胺 | 上海阿拉丁生化科技有限公司 | 分析纯 |
N, N'-亚甲基双丙烯酰胺 | 上海阿拉丁生化科技有限公司 | 分析纯 |
柠檬酸铵 | 上海麦克林生化科技有限公司 | 分析纯 |
聚乙二醇 | 上海阿拉丁生化科技有限公司 | 99.0% |
邻苯二甲酸二辛酯 | 上海麦克林生化科技有限公司 | 99.0% |
三乙醇胺 | 上海麦克林生化科技有限公司 | 99.0% |
聚乙烯醇缩丁醛 | 上海阿拉丁生化科技有限公司 | 99.0% |
Al2O3 | 淄博信富盟化工有限公司 | 99.0% |
GDC | 中国科学院宁波材料技术与工程研究所 | 99.50% |
银导电胶DAD-87 | 上海合成树脂研究所 | 99.99% |
粒状活性炭 | 上海阿拉丁试剂有限公司 | 触媒载体用 |
碳酸钾 | 上海麦克林生化科技有限公司 | 99% |
Fig. 1 Preparation of solid oxide fuel cells (a) Illustration of process for preparing anode supports; (b) Photo of a series of tubular cone-shaped SOFCs at different preparation stages (2-6) in contrast to green anode support (1); (c) The segmented-in-series four-cell stack; The tubular cone-shaped SOFCs marked with 2-6 are pre-sintered anode support, anode support with a co-sintered functional layer, anode support coated with electrolyte layer, completed tubular cone-shaped cell with one end closed, and completed tubular cone-shaped cell with both ends open, respectively
Component | Ref.[ | Ref.[ | This work |
---|---|---|---|
NiO-YSZ | 49.7% | 57.5% | 44.2% |
AM | 7.9% | 11.5% | 7.1% |
MBAM | 0.8% | 0.6% | 0.9% |
Deionized water | 20.7% | 17.2% | 26% |
Graphite | 10% | 11.5% | 13.2% |
AC | 1.7% | - | 1.3% |
Polyacrylic acid | - | 1.7% | - |
TEA | 1.0% | - | - |
PEG-600 | 8.2% | - | 7.3% |
Table 1 Comparison of the composition of gel-casting slurries
Component | Ref.[ | Ref.[ | This work |
---|---|---|---|
NiO-YSZ | 49.7% | 57.5% | 44.2% |
AM | 7.9% | 11.5% | 7.1% |
MBAM | 0.8% | 0.6% | 0.9% |
Deionized water | 20.7% | 17.2% | 26% |
Graphite | 10% | 11.5% | 13.2% |
AC | 1.7% | - | 1.3% |
Polyacrylic acid | - | 1.7% | - |
TEA | 1.0% | - | - |
PEG-600 | 8.2% | - | 7.3% |
Fig. 3 Electrochemical performance and microstructure of hydrogen-fueled SOFC single cell before and after process improvement (a, b) Output performances; (c) Electrochemical impedance spectra; (d) Comparison of the corresponding fitted resistances; (e, f) Microstructures of the SOFC observated by SEM. Colorful figures are available on website
Fig. 4 Electrochemical performance of a single DC-SOFC using 5% (in mass) K activated carbon (a) Output performances; (b) Open circuit voltages; (c) Electrochemical impedance spectra; (d) Comparison of the corresponding fitted resistances; (e) Discharge characteristics. Colorful figures are available on website
Fig. 5 Microstructure of the DC-SOFC anode after testing (a-d) Surface SEM image (a) and EDS mappings of K (b), C (c) and Ag (d); (e-g) Cross-sectional SEM image (e) and EDS mappings of K (f) and C (g)
Fig. 6 (a) Output performance and (b) discharge characteristic of the tubular cone-shaped segmented-in-series stack fueled by 5% (in mass) K-loaded activated carbon
[1] | KILKIS S, KRAJACIC G, DUIC N, et al. Advances in integration of energy, water and environment systems towards climate neutrality for sustainable development. Energy Conversion and Management, 2020, 225: 113410. |
[2] | XU G Y, SCHWARZ P, YANG H L. Adjusting energy consumption structure to achieve China’s CO2emissions peak. Renewable & Sustainable Energy Reviews, 2020, 122: 109737. |
[3] | SIVABALAN K, HASSAN S, YA H, et al. A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. Journal of Physics: Conference Series, 2021, 1831: 012033. |
[4] | TANG Y B, LIU J, SUI J. A novel direct carbon solid oxide fuel cell. 11th International Symposium on Solid Oxide Fuel Cells (SOFC), Vienna, 2009. |
[5] | LIU R Z, ZHAO C H, LI J L, et al. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells. Journal of Power Sources, 2010, 195(2): 480. |
[6] | LIU G Y, ZHOU A N, QIU J S, et al. Utilization of bituminous coal in a direct carbon fuel cell. International Journal of Hydrogen Energy, 2016, 41(20): 8576. |
[7] | RADY A C, GIDDEY S, BADWAL S P S, et al. Review of fuels for direct carbon fuel cells. Energy & Fuels, 2012, 26(3): 1471. |
[8] | GIDDEY S, BADWAL S P S, KULKARNI A, et al. A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science, 2012, 38(3): 360. |
[9] | DEEPI A S, PRIYA S D, NESARAJ A S, et al. Component fabrication techniques for solid oxide fuel cell (SOFC) — a comprehensive review and future prospects. International Journal of Green Energy, 2022, 19(14): 1600. |
[10] | NAKAGAWA N, ISHIDA M. Performance of an internal direct- oxidation carbon fuel cell and its evaluation by graphic exergy analysis. Industrial & Engineering Chemistry Research, 1988, 27(7): 1181. |
[11] | XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells. Journal of Solid State Electrochemistry, 2013, 17(1): 121. |
[12] | CARBONELL M S, VILLAGRACIA A C, ONG H L, et al. Review- bibliometrics and current research trends on direct carbon-solid oxide fuel cells utilizing biomass as fuel. Journal of the Electrochemical Society, 2023, 170(4): 044510. |
[13] | 刘江, 颜晓敏. 直接碳固体氧化物燃料电池. 电化学, 2020, 26(2): 175. |
[14] | 唐玉宝, 刘江. 以活性炭为燃料的固体氧化物燃料电池. 物理化学学报, 2010, 26(5): 1191. |
[15] | TANG Y B, LIU J. Effect of anode and boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35(20): 11188. |
[16] | 谢永敏. 直接碳固体氧化物燃料电池的反应机理及其在电-气联产方面的应用. 广州: 华南理工大学博士学位论文, 2015. |
[17] | YAN X M, ZHOU M Y, ZHANG Y P, et al. An all-solid-state carbon-air battery reaching an output power over 10 W and a specific energy of 3600 Wh kg-1. Chemical Engineering Journal, 2021, 404: 127057. |
[18] | ELLEUCH A, BOUSSETTA A, YU J S, et al. Experimental investigation of direct carbon fuel cell fueled by almond shell biochar: Part I. Physicochemical characterization of the biochar fuel and cell performance examination. International Journal of Hydrogen Energy, 2013, 38(36): 16590. |
[19] | ZHOU Q, CAI W Z, ZHANG Y P, et al. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell. Biomass & Bioenergy, 2016, 91: 250. |
[20] | CAI W Z, ZHOU Q, XIE Y M, et al. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst. Applied Energy, 2016, 179: 1232. |
[21] | CAI W Z, LIU J, YU F Y, et al. A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon. International Journal of Hydrogen Energy, 2017, 42(33): 21167. |
[22] | QIU Q Y, ZHOU M Y, CAI W Z, et al. A comparative investigation on direct carbon solid oxide fuel cells operated with fuels of biochar derived from wheat straw, corncob, and bagasse. Biomass & Bioenergy, 2019, 121: 56. |
[23] | LI X, ZHU Z H, DE MARCO R, et al. Evaluation of raw coals as fuels for direct carbon fuel cells. Journal of Power Sources, 2010, 195(13): 4051. |
[24] | HUIJSMANS J P P. Ceramics in solid oxide fuel cells. Current Opinion in Solid State and Materials Science, 2001, 5(4): 317. |
[25] | LI C J, LI C X, XING Y Z, et al. Influence of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC. Solid State Ionics, 2006, 177(19-25): 2065. |
[26] | MOON H, KIM S D, HYUN S H, et al. Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. International Journal of Hydrogen Energy, 2008, 33(6): 1758. |
[27] | DING J, LIU J, YUAN W S, et al. Slip casting combined with colloidal spray coating in fabrication of tubular anode-supported solid oxide fuel cells. Journal of the European Ceramic Society, 2008, 28(16): 3113. |
[28] | BAI Y H, LIU J, WANG C L. Performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack fabricated by dip coating technique. International Journal of Hydrogen Energy, 2009, 34(17): 7311. |
[29] | XIAO J, CAI W Z, LIU J, et al. A novel low-pressure injection molding technique for fabricating anode supported solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(10): 5105. |
[30] | PILLAI M R, GOSTOVIC D, KIM I, et al. Short-period segmented- in-series solid oxide fuel cells on flattened tube supports. Journal of Power Sources, 2007, 163(2): 960. |
[31] | YOUNG A C, OMATETE O O, JANNEY M A, et al. Gelcasting of alumina. Journal of the American Ceramic Society, 1991, 74(3): 612. |
[32] | MORALES M, LAGUNA-BERCERO M A. Microtubular solid oxide fuel cells fabricated by gel-casting: the role of supporting microstructure on the mechanical properties. RSC Advances, 2017, 7(29): 17620. |
[33] | ZHANG L, JIANG S P, WANG W, et al. NiO/YSZ, anode- supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. Journal of Power Sources, 2007, 170(1): 55. |
[34] | 叶梓滨, 周明扬, 邹高昌, 等. 凝胶注模法制备锥管串接式阳极支撑固体氧化物燃料电池及其性能研究. 陶瓷学报, 2023, 44(4): 761. |
[35] | YU F Y, ZHANG Y P, YU L, et al. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes. International Journal of Hydrogen Energy, 2016, 41(21): 9048. |
[36] | YU J L, WANG H J, ZHANG J, et al. Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers. Journal of Sol-Gel Science and Technology, 2010, 53(3): 515. |
[37] | LIU Y, TANG Y B, DING J, et al. Electrochemical performance of cone-shaped anode-supported segmented-in-series SOFCs fabricated by gel-casting technique. International Journal of Hydrogen Energy, 2012, 37(1): 921. |
[38] | HUANG Y, MA L G, LE H R, et al. Improving the homogeneity and reliability of ceramic parts with complex shapes by pressure- assisted gel-casting. Materials Letters, 2004, 58(30): 3893. |
[39] | MA L G, HUANG Y, YANG J L, et al. Effect of plasticizer on the cracking of ceramic green bodies in gelcasting. Journal of Materials Science, 2005, 40(18): 4947. |
[40] | YANG J, YU J, HUANG Y. Recent developments in gelcasting of ceramics. Journal of the European Ceramic Society, 2011, 31(14): 2569. |
[41] | XIANG J H, HUANG Y, XIE Z P. Study of gel-tape-casting process of ceramic materials. Materials Science and Engineering: A, 2002, 323(1/2): 336. |
[42] | MINH N Q. Ceramic fuel cells. Journal of the American Ceramic Society, 1993, 76(3): 563. |
[43] | BAI Y H, LIU Y, TANG Y B, et al. Direct carbon solid oxide fuel cell—a potential high performance battery. International Journal of Hydrogen Energy, 2011, 36(15): 9189. |
[1] | WU Songze, ZHOU Yang, LI Runfeng, LIU Xiaoqian, LI Cuiwei, HUANG Zhenying. Reaction Sintered Porous Ceramics Using Iron Tailings: Preparation and Properties [J]. Journal of Inorganic Materials, 2023, 38(10): 1193-1199. |
[2] | LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969-975. |
[3] | ZHANG Jin-Cheng, WANG Hao, XU Peng-Yu, TU Bing-Tian, WANG Wei-Min, FU Zheng-Yi. Preparation of ZnO·2.56Al2O3 Transparent Ceramics by Aqueous Gelcasting and Hot Isostatic Pressing [J]. Journal of Inorganic Materials, 2019, 34(10): 1072-1076. |
[4] | ZHANG Xiao-Qiang, SUN Yi, SHIMAI Shun-Zo, WANG Shi-Wei. Effect of Water-soluble Epoxy Resin on Microstructure and Properties of Porous Alumina Ceramics by Gel-casting [J]. Journal of Inorganic Materials, 2015, 30(10): 1085-1088. |
[5] | XU Hai-Xian, QIU Tai, YANG Jian, GUO Jian. Gel-casting of Fine Zirconia Using DMAA Gel System [J]. Journal of Inorganic Materials, 2011, 26(10): 1105-1110. |
[6] | DONG Man-Jiang,ZHANG Zhao-Quan,LIU Qian. Influence of Initiator Systems on Gelation Process of Alumina Slurry [J]. Journal of Inorganic Materials, 2008, 23(2): 413-416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||