Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (5): 459-468.DOI: 10.3724/SP.J.1077.2013.12506
• Orginal Article • Next Articles
BAO Yan, YANG Yong-Qiang, MA Jian-Zhong
Received:
2012-08-17
Revised:
2012-12-07
Published:
2013-05-10
Online:
2013-04-22
About author:
BAO Yan. E-mail: baoyan0611@126.com
Supported by:
CLC Number:
BAO Yan, YANG Yong-Qiang, MA Jian-Zhong. Research Progress of Hollow Structural Materials Prepared via Templating Method[J]. Journal of Inorganic Materials, 2013, 28(5): 459-468.
Add to citation manager EndNote|Ris|BibTeX
[1] | BIAN Bing-Xin, SONG Zhi-Wei, AI Shu-Yan. The properties and application of hollow fly ash spheres. Coal Process & Comprehensive Utilization, 1997, 17(3): 102-110. |
[2] | Caruso F, Caruso R A, Möhwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282(5391): 1111-1114. |
[3] | Li L, Ding J, Xue J M. Macroporous silica hollow microspheres as nanoparticle collectors. Chem. Mater., 2009, 21(15): 3629-3637. |
[4] | Huang C C, Huang W, Yeh C S. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials, 2011, 32(2): 556-564. |
[5] | Yang M, Wang G, Yang Z Z. Synthesis of hollow spheres with mesoporous silica nanoparticles shell. Mater. Chem. Phys., 2008, 111(1): 5-8. |
[6] | Pu H T, Zhang X, Yuan J J, et al. A facile method for the fabrication of vinyl functionalized hollow silica spheres. J. Colloid. Interface Sci., 2009, 331(2): 389-393. |
[7] | Liu D, Sasidharan M, Nakashima K. Micelles of poly (styrene-b-2-vinylpyridine-b-ethylene oxide) with blended polystyrene core and their application to the synthesis of hollow silica nanospheres. J. Colloid. Interface Sci., 2011, 358(2): 354-359. |
[8] | Wang Z X, Chen M, Wu L M. Synthesis of monodisperse hollow silver spheres using phase-transformable emulsions as templates. Chem. Mater., 2008, 20(10): 3251-3253. |
[9] | CAO Feng, LI Dong-Xu, GUAN Zi-Sheng. Preparation of silica gollow microspheres with special surface morphology by bio-template method. Journal of Inorganic Materials, 2009, 3(24): 501-506. |
[10] | ZHANG Bo, REN Tian-Rui, WU Hai-Qing. Preparation of hollow silica sicrospheres with Synechocystis sp. PCC 6803 as bio-template. The Chinese Journal of Process Engineering, 2011, 11(1): 107-112. |
[11] | Nomura T, Morimoto Y, Ishikawa M, et al. Synthesis of hollow silica microparticles from bacterial templates. Adv. Powder. Technol., 2010, 21(2): 8-12. |
[12] | Wei L, Lei Y L, Fu H B, et al. Fullerene hollow microspheres prepared by bubble-templates as sensitive and selective electrocatalytic sensor for biomolecules. ACS. Appl. Mater. Interfaces, 2012, 4(3): 1594-1600. |
[13] | Yan C L, Xue D F. Polyhedral construction of hollow ZnO microspheres by CO2 bubble templates. J. Alloys Compd., 2007, 431(1/2): 241-245. |
[14] | Wang L Y, Wang L, Fang Z. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry, 2006, 12(24): 6341-6347. |
[15] | Wu W, Xiao X H, Zhang S F, et al. One-pot reaction and subsequent annealing to synthesis hollow spherical magnetite and maghemite nanocages. Nanoscale. Res. Lett., 2009, 4(8): 926-931. |
[16] | Voorhees P W. The theory of ostwald ripening. J. Stat. Phys., 1985, 38(1/2): 231-256. |
[17] | Yang H G, Zeng H C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B, 2004, 108(11): 3492-3495. |
[18] | Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Inorg. Nano. Struct., 2005, 1(5): 566-571. |
[19] | Jang E J, Lim E K, Choi J, et al. Br-assisted Ostwald ripening of Au nanoparticles under H2O2 redox. Cryst. Growth. Des., 2012, 12(1): 37-39. |
[20] | Gentry S T, Kendra S F, Bezpalko M W. Ostwald ripening in metallic nanoparticles: stochastic kinetics. J. Phys. Chem. C, 2011, 115(26): 12736-12741. |
[21] | CHEN Kai, MA Ding, HUANG Wei-Xin, et al. Hydrothermal syntheses of hollow carbon nano-materials by Ostwald ripening. Chemical Journal of Chinese Universities, 2008, 29(8): 1501-1504. |
[22] | Chen S, Zhang X L, Hou X M, et al. One-pot synthesis of hollow PbSe single-crystalline nanoboxes via gas bubble assisted Ostwald ripening. Crys. Growth. Des., 2010, 10(3): 1257-1262. |
[23] | Liu S Q, Xie M J, Li Y X, et al. Novel seaurchin-like hollow core-shell SnO2 superstructures: facile synthesis and excellent ethanol sensing performance. Sens. Actuators. B: Chemical, 2010, 151(1): 229-235. |
[24] | Li Jing, Zeng H C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc., 2007, 129(51): 15839-15847. |
[25] | Wang Xi, Yuan F L, Hu P, et al. Self-assembled growth of hollow spheres with octahedron-like Co nanocrystals via one-pot solution fabrication. J. Phys. Chem. C, 2008, 112(24): 8773-8778. |
[26] | Yin Y D, Rioux R M, Alivisatos A P, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Sci. Mag., 2004, 304(5671): 711-716. |
[27] | Ramesh T N. Investigation on the oxidation mechanism of cobalt hydroxide to cobalt oxyhydroxide. Ind. Eng. Chem. Res., 2010, 49(4): 1530-1533. |
[28] | Fan H J, Knez M, Roland S, et al. Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: the basic concept. Nano. Lett., 2007, 7(4): 993-997. |
[29] | Zhang G Q, Wang W, Yu Q X, et al. Facile one-pot synthesis of PbSe and NiSe2 hollow spheres: Kirkendall-effect-induced growth and related properties. Chem. Mater., 2009, 21(5): 969-974. |
[30] | An K J, Kwon S G, Hyeon T. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano. Lett., 2008, 8(12): 4252-4258. |
[31] | Park J W, Zheng H M, Alivisatos A P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc., 2009, 131(39): 13943-13945. |
[32] | Moshe A B, Markovich G. Synthesis of single crystal hollow silver nanoparticles in a fast reaction-diffusion process. J. Am. Chem. Soc., 2011, 23(5): 1239-1245. |
[33] | Wang J X, Ma C, Choi Y M. Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J. Am. Chem. Soc., 2011, 133(34): 13551-13557. |
[34] | Song X F, Gao L, Mathur S. Synthesis, characterization, gas sensing properties of porous nickel oxide nanotubes. J. Phys. Chem. C, 2011, 115(44): 21730-21735. |
[35] | Liu J, Chen X L, Wang W J, et al. Large scale synthesis of porous ZnO hollow structures with tunable diameters and shell thicknesses. Mater. Lett., 2009, 63(26): 2221-2223. |
[36] | Zhu H T, Wang J X, Wu D X. Fast synthesis, formation mechanism and control of shell thickness of CuS hollow spheres. Inorg. Chem., 2009, 48(15): 7099-7104. |
[37] | Wang J W, Johnston-Peck A C, Tracy J B. Nickel phosphide nanoparticles with hollow, solid, and amorphous structures. Chem. Mater., 2009, 21(19): 4462-4467. |
[38] | Peng Q, Sun X Y, Spagnola J C, et al. Bi-directional Kirkendall effect in coaxial microtube nanolaminate assemblies fabricated by atomic layer deposition. ACS Nano, 2009, 3(3): 546-554. |
[39] | Liang X, Wang X, Zhuang Y, et a1. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendal1 effect. J. Am. Chem. Soc., 2008, 130(9): 2736-2737. |
[40] | Fan H J, Knez M, Scholz R, et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater., 2006, 5(8): 627-631. |
[41] | Jiao S H, Jiang K, Xu D S. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv. Mater., 2006, 18(9): 1174-1177. |
[42] | Chen H M, Lee J F. Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C, 2008, 112(20): 7522-7526. |
[43] | Sun Y G, Mayers B T, Xia Y. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano. Lett., 2002, 2(5): 481-485. |
[44] | Kim M H, Lu X M, Xia Y, et al. Morphological evolution of single-crystal Ag nanospheres during the Galvanic replacement reaction with HAuCl4. J. Phys. Chem. C, 2008, 112(21): 7872-7876. |
[45] | You L, Mao Y W, Ge J P. Synthesis of stable SiO2@Au-nanoring colloids as recyclable catalysts: galvanic replacement taking place on the surface. J. Phys. Chem. C, 2012, 116(19): 10753-10759. |
[46] | Liang H P, Wan L J, Bai C L, et al. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J. Phys. Chem. B, 2005, 109(16): 7795-7800. |
[47] | Guo S J, Fang Y X, Dong S J. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: spongelike Au/Pt core/shell nanomaterial with hollow cavity. J. Phys. Chem. C, 111(45): 17104-17109. |
[48] | Mohl M, Dobo D, Kukovecz A, et al. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C, 2011, 115(19): 9403-9409. |
[49] | Teng X W, Wang Q, Liu P, et al. Formation of Pd/Au nanostructures from Pd nanowires via Galvanic replacement reaction. J. Am. Chem. Soc., 2008, 130(3): 1093-1101. |
[50] | Seo D, Song H. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction. J. Am. Chem. Soc., 2009, 131(51): 18210-18211. |
[51] | Papadimitriou S, Armyanov S, Valova E, et al. Methanol oxidation at Pt-Cu, Pt-Ni, and Pt-Co electrode coatings prepared by a galvanic replacement process. J. Phys. Chem. C, 2010, 114(11): 5217-5223. |
[52] | Vongsavat V, Vittur B M, Lee T R, et al. Ultrasmall hollow gold silver nanoshells with extinctions strongly red-shifted to the near- infrared. ACS. Appl. Mater. Interfaces, 2011, 3(9): 3616-3624. |
[53] | Cobley C M, Xia Y. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R, 2010, 3-6(70): 44-62. |
[54] | Zhang Q, Zhang T R, Yin Y D. Permeable silica shell through surface-protected etching. Nano Lett., 2008, 8(9): 2867-2871. |
[55] | Zhang H N, Zhou Y, Akins D L. Synthesis of hollow ellipsoidal silica nanostructures using a wet-chemical etching approach. J. Colloid. Interface. Sci., 2012, 375(1): 106-111. |
[56] | Chen B D, Li L L, Tang F Q. Facile and scalable synthesis of tailored silica ‘‘Nanorattle’’ structures. Chem. Mater., 2009, 21(37): 3804-3807. |
[57] | Kim D Y, Park J, Hyeon T, et al. Synthesis of hollow iron nanoframes. J. Am. Chem. Soc., 2007, 129(18): 5812-5813. |
[58] | Wang Z Y, Luan D Y, Li C M, et al. Engineering nonspherical hollow structures with complex interiors by template- engaged redox etching. J. Am. Chem. Soc., 2010, 132(45): 16271-16277. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||