Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (5): 459-468.DOI: 10.3724/SP.J.1077.2013.12506
• Orginal Article • Next Articles
BAO Yan, YANG Yong-Qiang, MA Jian-Zhong
Received:
2012-08-17
Revised:
2012-12-07
Published:
2013-05-10
Online:
2013-04-22
About author:
BAO Yan. E-mail: baoyan0611@126.com
Supported by:
CLC Number:
BAO Yan, YANG Yong-Qiang, MA Jian-Zhong. Research Progress of Hollow Structural Materials Prepared via Templating Method[J]. Journal of Inorganic Materials, 2013, 28(5): 459-468.
Add to citation manager EndNote|Ris|BibTeX
[1] | BIAN Bing-Xin, SONG Zhi-Wei, AI Shu-Yan. The properties and application of hollow fly ash spheres. Coal Process & Comprehensive Utilization, 1997, 17(3): 102-110. |
[2] | Caruso F, Caruso R A, Möhwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282(5391): 1111-1114. |
[3] | Li L, Ding J, Xue J M. Macroporous silica hollow microspheres as nanoparticle collectors. Chem. Mater., 2009, 21(15): 3629-3637. |
[4] | Huang C C, Huang W, Yeh C S. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials, 2011, 32(2): 556-564. |
[5] | Yang M, Wang G, Yang Z Z. Synthesis of hollow spheres with mesoporous silica nanoparticles shell. Mater. Chem. Phys., 2008, 111(1): 5-8. |
[6] | Pu H T, Zhang X, Yuan J J, et al. A facile method for the fabrication of vinyl functionalized hollow silica spheres. J. Colloid. Interface Sci., 2009, 331(2): 389-393. |
[7] | Liu D, Sasidharan M, Nakashima K. Micelles of poly (styrene-b-2-vinylpyridine-b-ethylene oxide) with blended polystyrene core and their application to the synthesis of hollow silica nanospheres. J. Colloid. Interface Sci., 2011, 358(2): 354-359. |
[8] | Wang Z X, Chen M, Wu L M. Synthesis of monodisperse hollow silver spheres using phase-transformable emulsions as templates. Chem. Mater., 2008, 20(10): 3251-3253. |
[9] | CAO Feng, LI Dong-Xu, GUAN Zi-Sheng. Preparation of silica gollow microspheres with special surface morphology by bio-template method. Journal of Inorganic Materials, 2009, 3(24): 501-506. |
[10] | ZHANG Bo, REN Tian-Rui, WU Hai-Qing. Preparation of hollow silica sicrospheres with Synechocystis sp. PCC 6803 as bio-template. The Chinese Journal of Process Engineering, 2011, 11(1): 107-112. |
[11] | Nomura T, Morimoto Y, Ishikawa M, et al. Synthesis of hollow silica microparticles from bacterial templates. Adv. Powder. Technol., 2010, 21(2): 8-12. |
[12] | Wei L, Lei Y L, Fu H B, et al. Fullerene hollow microspheres prepared by bubble-templates as sensitive and selective electrocatalytic sensor for biomolecules. ACS. Appl. Mater. Interfaces, 2012, 4(3): 1594-1600. |
[13] | Yan C L, Xue D F. Polyhedral construction of hollow ZnO microspheres by CO2 bubble templates. J. Alloys Compd., 2007, 431(1/2): 241-245. |
[14] | Wang L Y, Wang L, Fang Z. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry, 2006, 12(24): 6341-6347. |
[15] | Wu W, Xiao X H, Zhang S F, et al. One-pot reaction and subsequent annealing to synthesis hollow spherical magnetite and maghemite nanocages. Nanoscale. Res. Lett., 2009, 4(8): 926-931. |
[16] | Voorhees P W. The theory of ostwald ripening. J. Stat. Phys., 1985, 38(1/2): 231-256. |
[17] | Yang H G, Zeng H C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B, 2004, 108(11): 3492-3495. |
[18] | Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Inorg. Nano. Struct., 2005, 1(5): 566-571. |
[19] | Jang E J, Lim E K, Choi J, et al. Br-assisted Ostwald ripening of Au nanoparticles under H2O2 redox. Cryst. Growth. Des., 2012, 12(1): 37-39. |
[20] | Gentry S T, Kendra S F, Bezpalko M W. Ostwald ripening in metallic nanoparticles: stochastic kinetics. J. Phys. Chem. C, 2011, 115(26): 12736-12741. |
[21] | CHEN Kai, MA Ding, HUANG Wei-Xin, et al. Hydrothermal syntheses of hollow carbon nano-materials by Ostwald ripening. Chemical Journal of Chinese Universities, 2008, 29(8): 1501-1504. |
[22] | Chen S, Zhang X L, Hou X M, et al. One-pot synthesis of hollow PbSe single-crystalline nanoboxes via gas bubble assisted Ostwald ripening. Crys. Growth. Des., 2010, 10(3): 1257-1262. |
[23] | Liu S Q, Xie M J, Li Y X, et al. Novel seaurchin-like hollow core-shell SnO2 superstructures: facile synthesis and excellent ethanol sensing performance. Sens. Actuators. B: Chemical, 2010, 151(1): 229-235. |
[24] | Li Jing, Zeng H C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc., 2007, 129(51): 15839-15847. |
[25] | Wang Xi, Yuan F L, Hu P, et al. Self-assembled growth of hollow spheres with octahedron-like Co nanocrystals via one-pot solution fabrication. J. Phys. Chem. C, 2008, 112(24): 8773-8778. |
[26] | Yin Y D, Rioux R M, Alivisatos A P, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Sci. Mag., 2004, 304(5671): 711-716. |
[27] | Ramesh T N. Investigation on the oxidation mechanism of cobalt hydroxide to cobalt oxyhydroxide. Ind. Eng. Chem. Res., 2010, 49(4): 1530-1533. |
[28] | Fan H J, Knez M, Roland S, et al. Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: the basic concept. Nano. Lett., 2007, 7(4): 993-997. |
[29] | Zhang G Q, Wang W, Yu Q X, et al. Facile one-pot synthesis of PbSe and NiSe2 hollow spheres: Kirkendall-effect-induced growth and related properties. Chem. Mater., 2009, 21(5): 969-974. |
[30] | An K J, Kwon S G, Hyeon T. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano. Lett., 2008, 8(12): 4252-4258. |
[31] | Park J W, Zheng H M, Alivisatos A P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc., 2009, 131(39): 13943-13945. |
[32] | Moshe A B, Markovich G. Synthesis of single crystal hollow silver nanoparticles in a fast reaction-diffusion process. J. Am. Chem. Soc., 2011, 23(5): 1239-1245. |
[33] | Wang J X, Ma C, Choi Y M. Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J. Am. Chem. Soc., 2011, 133(34): 13551-13557. |
[34] | Song X F, Gao L, Mathur S. Synthesis, characterization, gas sensing properties of porous nickel oxide nanotubes. J. Phys. Chem. C, 2011, 115(44): 21730-21735. |
[35] | Liu J, Chen X L, Wang W J, et al. Large scale synthesis of porous ZnO hollow structures with tunable diameters and shell thicknesses. Mater. Lett., 2009, 63(26): 2221-2223. |
[36] | Zhu H T, Wang J X, Wu D X. Fast synthesis, formation mechanism and control of shell thickness of CuS hollow spheres. Inorg. Chem., 2009, 48(15): 7099-7104. |
[37] | Wang J W, Johnston-Peck A C, Tracy J B. Nickel phosphide nanoparticles with hollow, solid, and amorphous structures. Chem. Mater., 2009, 21(19): 4462-4467. |
[38] | Peng Q, Sun X Y, Spagnola J C, et al. Bi-directional Kirkendall effect in coaxial microtube nanolaminate assemblies fabricated by atomic layer deposition. ACS Nano, 2009, 3(3): 546-554. |
[39] | Liang X, Wang X, Zhuang Y, et a1. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendal1 effect. J. Am. Chem. Soc., 2008, 130(9): 2736-2737. |
[40] | Fan H J, Knez M, Scholz R, et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater., 2006, 5(8): 627-631. |
[41] | Jiao S H, Jiang K, Xu D S. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv. Mater., 2006, 18(9): 1174-1177. |
[42] | Chen H M, Lee J F. Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C, 2008, 112(20): 7522-7526. |
[43] | Sun Y G, Mayers B T, Xia Y. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano. Lett., 2002, 2(5): 481-485. |
[44] | Kim M H, Lu X M, Xia Y, et al. Morphological evolution of single-crystal Ag nanospheres during the Galvanic replacement reaction with HAuCl4. J. Phys. Chem. C, 2008, 112(21): 7872-7876. |
[45] | You L, Mao Y W, Ge J P. Synthesis of stable SiO2@Au-nanoring colloids as recyclable catalysts: galvanic replacement taking place on the surface. J. Phys. Chem. C, 2012, 116(19): 10753-10759. |
[46] | Liang H P, Wan L J, Bai C L, et al. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J. Phys. Chem. B, 2005, 109(16): 7795-7800. |
[47] | Guo S J, Fang Y X, Dong S J. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: spongelike Au/Pt core/shell nanomaterial with hollow cavity. J. Phys. Chem. C, 111(45): 17104-17109. |
[48] | Mohl M, Dobo D, Kukovecz A, et al. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C, 2011, 115(19): 9403-9409. |
[49] | Teng X W, Wang Q, Liu P, et al. Formation of Pd/Au nanostructures from Pd nanowires via Galvanic replacement reaction. J. Am. Chem. Soc., 2008, 130(3): 1093-1101. |
[50] | Seo D, Song H. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction. J. Am. Chem. Soc., 2009, 131(51): 18210-18211. |
[51] | Papadimitriou S, Armyanov S, Valova E, et al. Methanol oxidation at Pt-Cu, Pt-Ni, and Pt-Co electrode coatings prepared by a galvanic replacement process. J. Phys. Chem. C, 2010, 114(11): 5217-5223. |
[52] | Vongsavat V, Vittur B M, Lee T R, et al. Ultrasmall hollow gold silver nanoshells with extinctions strongly red-shifted to the near- infrared. ACS. Appl. Mater. Interfaces, 2011, 3(9): 3616-3624. |
[53] | Cobley C M, Xia Y. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R, 2010, 3-6(70): 44-62. |
[54] | Zhang Q, Zhang T R, Yin Y D. Permeable silica shell through surface-protected etching. Nano Lett., 2008, 8(9): 2867-2871. |
[55] | Zhang H N, Zhou Y, Akins D L. Synthesis of hollow ellipsoidal silica nanostructures using a wet-chemical etching approach. J. Colloid. Interface. Sci., 2012, 375(1): 106-111. |
[56] | Chen B D, Li L L, Tang F Q. Facile and scalable synthesis of tailored silica ‘‘Nanorattle’’ structures. Chem. Mater., 2009, 21(37): 3804-3807. |
[57] | Kim D Y, Park J, Hyeon T, et al. Synthesis of hollow iron nanoframes. J. Am. Chem. Soc., 2007, 129(18): 5812-5813. |
[58] | Wang Z Y, Luan D Y, Li C M, et al. Engineering nonspherical hollow structures with complex interiors by template- engaged redox etching. J. Am. Chem. Soc., 2010, 132(45): 16271-16277. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||