Journal of Inorganic Materials
Previous Articles Next Articles
FENG Hengyang1, WEI Tian-Ran1*, QIU Pengfei2, SHI Xun2*
Received:2025-10-31
Revised:2025-12-17
Contact:
WEI Tian-Ran, professor. E-mail: tianran_wei@sjtu.edu.cn; SHI Xun, professor. E-mail: xshi@mail.sic.ac.cn
About author:FENG Hengyang (2000-), male, PhD candidate. E-mail: dajingfhy@sjtu.edu.cn
Supported by:CLC Number:
FENG Hengyang, WEI Tian-Ran, QIU Pengfei, SHI Xun. Ultra-large Macroscopic Plastic Deformation and Metalworking in Inorganic Semiconductors[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250437.
| [1] 谢建新. 材料加工新技术与新工艺,第一版. 北京:冶金工业出版社,2004, 1-13. [2] GREEN D J.An Introduction to the Mechanical Properties of Ceramics, the first edition. Cambridge, UK: Cambridge University Press, 1998, 210-217. [3] DONG S M, WANG J Y, NI D W.Structural ceramics—the cornerstone of human civilization. Journal of Inorganic Materials, 2024, 39(6): 569. [4] JOSHUA P.Mechanical Properties of Semiconductors, the first edition. Cham, Switzerland, Springer Nature Switzerland AG, 2024, 271-272. [5] 吴汉明. 集成电路制造大生产工艺技术,第一版. 浙江:浙江大学出版社,2023, 63-198. [6] SHI X, CHEN H Y, HAO F,et al. Room-temperature ductile inorganic semiconductor. Nature Materials, 2018, 17(5): 421. [7] LIANG J S, WANG T, QIU P F,et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy & Environmental Science, 2019, 12(10): 2983. [8] HE S Y, LI Y B, LIU L,,et al. Semiconductor glass with superior flexibility. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Science Advances, 2020, 6(15): eaaz8423. [9] GAO Z Q, YANG Q Y, QIU P F,et al. p-Type Plastic Inorganic Thermoelectric Materials. Advanced Energy Materials, 2021, 11(23): 2100883. [10] YANG S Q, GAO Z Q, QIU P F,et al. Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance. Advanced Materials, 2021, 33(10): 2007681. [11] WEI T R, QIU P F, ZHAO K P,et al. Ag2Q-based (Q=S, Se, Te) silver chalcogenide thermoelectric materials. Advanced Materials, 2023, 35(1): 2110236. [12] CHEN H Y, SHAO C L, HUANG S J,et al. High-entropy cubic pseudo-ternary Ag2(S, Se, Te) materials with excellent ductility and thermoelectric performance. Advanced Energy Materials, 2024, 14(10): 2303473. [13] WEI TR, JIN M, WANG Y C,et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science, 2020, 369(6503): 542. [14] HAN X D.Ductile van der Waals materials.Science, 2020, 369(6503): 509. [15] GAO Z Q, WEI TR, DENG T T,et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nature Communications, 2022, 13: 7491. [16] DENG T T, GAO Z Q, LI Z,et al. Room-temperature exceptional plasticity in defective Bi2Te3-based bulk thermoelectric crystals. Science, 2024, 386(6726): 1112. [17] ZHAO P, XUE W H, ZHANG Y,et al. Plasticity in single-crystalline Mg3Bi2 thermoelectric material. Nature, 2024, 631(8022): 777. [18] LI A R, WANG Y C, LI Y Z,et al. High performance magnesium-based plastic semiconductors for flexible thermoelectrics. Nature Communications, 2024, 15: 5108. [19] “中国学科及前沿领域发展战略研究(2021-2035)”项目组. 中国材料科学2035发展战略,第一版. 北京:科学出版社,2023, 494-495. [20] OSHIMA Y, NAKAMURA A and MATSUNAGA K. Extraordinary plasticity of an inorganic semiconductor in darkness.Science, 2018, 360(6390): 772. [21] LIANG J S, QIU P F, ZHU Y,et al. Chen. Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1‐xSxSystem. Research, 2020, 2020: 6591981. [22] LIANG X and CHEN C. Ductile inorganic amorphous/crystalline composite Ag4TeS with phonon-glass electron-crystal transport behavior and excellent stability of high thermoelectric performance on plastic deformation.Acta Materialia, 2021, 218: 117231. [23] PENG L M, YANG S Q, WEI T R,et al. Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. Journal of Materiomics, 2022, 8(3): 656. [24] YANG Q Y, YANG S Q, QIU P F,et al. Flexible thermoelectrics based on ductile semiconductors. Science, 2022, 377(6608): 854. [25] LIANG J S, LIU J, QIU P F,et al. Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials. Nature Communications, 2023, 14: 8442. [26] WU H, SHI X L, MAO Y Q,et al. Optimized thermoelectric performance and plasticity of ductile semiconductor Ag2S0.5Se0.5 via dual-phase engineering. Advanced Energy Materials, 2023, 13(43): 2302551. [27] LI N H, SHI X L, LIU S Q,et al. Strategic vacancy engineering advances record-high ductile AgCu(Te, Se, S) thermoelectrics. Nature Communications, 2025, 16: 2812. [28] HU H P, WANG Y C, FU C G,et al. Achieving metal-like malleability and ductility in Ag2Te1-xSx inorganic thermoelectric semiconductors with high mobility. The Innovation, 2022, 3(6):100341. [29] DENG T T, GAO Z Q, QIU P F,et al. Plastic/ductile bulk 2D van der Waals single-crystalline SnSe2 for flexible thermoelectrics. Advanced Science, 2022, 9(29): 2203436. [30] LUO J, CHEN J, GAO Z Q,,et al. Ductile Inorganic Ferromagnetic Semiconductor. Advanced Materials. Ductile Inorganic Ferromagnetic Semiconductor. Advanced Materials, 2025. https://doi: 10.1002/adma.202514083. [31] HUANG H R, CHEN H Y, GAO Z Q,et al. Room-temperature wide-gap inorganic materials with excellent plasticity. Advanced Functional Materials, 2023, 33(43): 2306042. [32] ALEKPEROVA S M, AKHMEDOV I A, GADZHIEVA G S,et al. Giant magnetoresistance and kinetic phenomena in n-Ag4SSe in the vicinity of a phase transition. Physics of the Solid State, 2007, 49(3): 512. [33] REN S H, CHEN H Y, FU H L,,et al. The structural origin of extraordinary plasticity in polycrystalline semiconductors with low symmetry. Science Advances. The structural origin of extraordinary plasticity in polycrystalline semiconductors with low symmetry. Science Advances, 2025, 11(27): eadu9205. [34] MA Y P, HUANG H R, LIU Y F,et al. Remarkable plasticity and softness of polymorphic InSe van der Waals crystals. Journal of Materiomics, 2023, 9(4): 709. [35] Springer materials. (update2025)[ 2025-10-30]. https://materials.springer.com/periodictable#. [36] 陈立东,刘睿恒,史迅. 热电材料与器件,第一版. 北京:科学出版社,2018, 66-70. [37] CASTO L D, CLUNE A J, YOKOSUK M O,et al. Strong spin-lattice coupling in CrSiTe3. APL Materials, 2015, 3(4):041515. [38] IMAI Y, WATANABE A.Electronic structures of Mg3Pn2 (Pn= N, P, As, Sb and Bi) and Ca3N2 calculated by a first-principle pseudopotential method.Journal of Materials Science, 2006, 41(8): 2435. [39] MEYERS M, CHAWLA K.Mechanical Behavior of Materials, the first edition. Cambridge, UK: Cambridge university press, 2008, 404-420. [40] MA H Q, HUANG H G, LU Z T,et al. Origin of shear induced ‘catching bonds’ on half Heusler thermoelectric compounds XFeSb (X = Nb, Ta) and SnNiY (Y = Ti, Zr, Hf). npj Computational Materials, 2024, 10: 61. [41] ZHANG J, LIU G H, CUI W,et al. Plastic deformation in silicon nitride ceramics via bond switching at coherent interfaces. Science, 2022, 378(6618): 371. [42] WANG Y C, LI A R, HONG Y R,et al. Iterative sublattice amorphization facilitates exceptional processability in inorganic semiconductors. Nature Materials, 2025, 24: 1545. [43] HU M Y, YANG J M, WANG Y,et al. Helical dislocation-driven plasticity and flexible high-performance thermoelectric generator in α-Mg3Bi2 single crystals. Nature Communications, 2025, 16: 128. [44] SUN Y D, MA Y P, ZHANG J Y,,et al. Van der Waals semiconductor InSe plastifies by martensitic transformation. Science Advances. Van der Waals semiconductor InSe plastifies by martensitic transformation. Science Advances, 2024, 10(42): eado9593. [45] WONG L W, YANG K, HAN W,et al. Deciphering the ultra-high plasticity in metal monochalcogenides. Nature Materials, 2024, 23(2): 196. [46] GE B Z, LI C, LU W Q,et al. Dynamic phase transition leading to extraordinary plastic deformability of thermoelectric snse2 single crystal. Advanced Energy Materials, 2023, 13(27): 2300965. [47] RICE J R, THOMSON R.Ductileversus brittle behaviour of crystals. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1974, 29(1): 73. [48] WU Y J, ZHANG Y, WANG X Y,et al. Twisted-layer boron nitride ceramic with high deformability and strength. Nature, 2024, 626(8000): 779. [49] CANTOS-PRIETO F, FALIN A, ALLIATI M,et al. Layer-dependent mechanical properties and enhanced plasticity in the Van der Waals chromium trihalide magnets. Nano Letters, 2021, 21(8): 3379. [50] REN Q, LUN Y Z, LI Y H, et al. High-throughput screening of deformable inorganic layered semiconductors. The Journal of Physical Chemistry C, 2023, 127(16): 7870. [51] TAN J L, ZHANG H Y, WANG X Z,et al. Deformable monoclinic gallium telluride with high in-plane structural anisotropy. Materials Today, 2024, 80: 250. [52] GAO Z Q, YANG S Q, MA Y P,et al. Warm metalworking for plastic manufacturing in brittle semiconductors. Nature Materials, 2025, 24: 1538. [53] NAKAMURA A, LI Y.Plastic processing of bulk semiconductors.Nature Materials, 2025, 24(10): 1505. [54] LIANG J, ZHANG X F, WAN C L.From brittle to ductile: a scalable and tailorable all-inorganic semiconductor foil through a rolling process toward flexible thermoelectric modules.ACS Applied Materials & Interfaces, 2022, 14(46): 52017. [55] ZHU Y, LIANG J S, MATHAYAN V,et al. High performance full-inorganic flexible memristor with combined resistance-switching. ACS Applied Materials & Interfaces, 2022, 14(18): 21173. [56] ZHAO X F, YANG S Q, WEN X H,et al. A fully flexible intelligent thermal touch panel based on intrinsically plastic Ag2S semiconductor. Advanced Materials, 2022, 34(13): 2107479. [57] WANG X D, TAN J L, OUYANG J,et al. Designing inorganic semiconductors with cold-rolling processability. Advanced Science, 2022, 9(30): 2203776. [58] WANG Q, WAN C L, WU Y,et al. Plastic inorganic van der waals semiconductors for flexible X-ray detectors. ACS Applied Electronic Materials, 2025, 7(5): 1764. [59] FU L, MA Y P, PAN Z Y,et al. Warm metalworking for brittle liquid-nitrogen-temperature thermoelectric materials. Advanced Energy Materials, 2025, 15(42): e03241. [60] DING W J, SHEN X Y, JIN M,et al. Robust bendable thermoelectric generators enabled by elasticity strengthening. Nature Communications, 2024, 15: 9767. [61] FU Y Q, KANG S L, GU H,et al. Superflexible Inorganic Ag2Te0.6S0.4 Fiber with High Thermoelectric Performance. Advanced Science, 2023, 10(13): 2207642. [62] XIN L T, HE H Y, WANG X H,et al. Single-crystalline indium selenide fibers by laser-induced recrystallization and their tunable whispering-gallery-mode lasing by pressure-modulating. Journal of the American Ceramic Society, 2024, 107(9): 5801. [63] LI X C, MENG Y, LI W P,et al. Multislip-enabled morphing of all-inorganic perovskites. Nature Materials, 2023, 22(10): 1175. [64] DONG L R, ZHANG J, LI Y Z, et al. Borrowed dislocations for ductility in ceramics.Science, 2024, 385(6707): 422. |
| [1] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. |
| [2] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
| [3] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
| [4] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
| [5] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
| [6] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
| [7] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
| [8] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
| [9] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
| [10] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
| [11] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
| [12] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
| [13] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
| [14] | WANG Jingyu, WAN Changjin, WAN Qing. Dual-gate IGZO-based Neuromorphic Transistors with Stacked Al2O3/Chitosan Gate Dielectrics [J]. Journal of Inorganic Materials, 2023, 38(4): 445-451. |
| [15] | QIU Haiyang, MIAO Guangtan, LI Hui, LUAN Qi, LIU Guoxia, SHAN Fukai. Effect of Plasma Treatment on the Long-term Plasticity of Synaptic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 406-412. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||