Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (2): 179-185.DOI: 10.15541/jim20230397
Special Issue: 【信息功能】敏感陶瓷(202409); 【信息功能】介电、铁电、压电材料(202409); 【信息功能】柔性材料(202409); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
• PERSPECTIVE • Previous Articles Next Articles
YIN Jianyu1(), LIU Nishuang1(
), GAO Yihua1,2(
)
Received:
2023-08-31
Revised:
2023-10-12
Published:
2023-10-15
Online:
2023-10-15
Contact:
LIU Nishuang, professor. E-mail: nishuang_liu@foxmail.com;About author:
YIN Jianyu (1994-), male, PhD candidate. E-mail: yjy.yin@outlook.com
Supported by:
CLC Number:
YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing[J]. Journal of Inorganic Materials, 2024, 39(2): 179-185.
Fig. 2 Structural designs based on MXene Schematic illustration of the fabrication of (a) Ti3C2Tx/rGO aerogel[30], (b) Ti3C2Tx/CNF foam[12], (c) Ti3C2Tx hydrogel[34], (d) Ti3C2Tx/cotton fabric composite material[37] and (e) biomimetic interconnected bio-composite film[39]
Fig. 3 Pressure-sensing mechanism based on MXene Schematic representation of the working mechanisms of (A) MXene-sponge piezoresistive pressure sensor[31], (B) MXene/PVP-based capacitive pressure sensor[42], (C) SF@MXene-A based triboelectric nanogenerator[43], (D) PVDF/MXene piezoelectric pressure sensor[45], (E) rGM battery typed pressure sensor[46] and (F) MXene/CNF nanofluid pressure sensor[48]
[1] |
YANG R X, DUTTA A K, LI B W, et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nature Communications, 2023, 14: 2907.
DOI PMID |
[2] |
XIONG X Y, LIANG J, WU W. Principle and recent progress of triboelectric pressure sensors for wearable applications. Nano Energy, 2023, 113: 108542.
DOI URL |
[3] |
BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics, 2018, 1(5): 314.
DOI |
[4] |
SHI Z Y, MENG L X, SHI X L, et al. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Letters, 2022, 14(1): 141.
DOI PMID |
[5] |
XU T, SONG Q, LIU K, et al. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Letters, 2023, 15(1): 98.
DOI PMID |
[6] | YANG Y N, WANG R R, SUN J. MXenes in flexible force sensitive sensors: a review. Journal of Inorganic Materials, 2019, 35(1): 8. |
[7] |
CHOI J, KWON D, KIM B, et al. Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell. Nano Energy, 2020, 74: 104749.
DOI URL |
[8] |
CHEN S W, WU N, LIN S Z, et al. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy, 2020, 70: 104460.
DOI URL |
[9] |
DING L, JIANG R, TANG Z L, et al. MXene: nanoengineering and application as electrode materials for supercapacitors. Journal of Inorganic Materials, 2022, 38(6): 619.
DOI URL |
[10] |
WANG Y Z, GUO T C, TIAN Z N, et al. MXenes for energy harvesting. Advanced Materials, 2022, 34(21): 2108560.
DOI URL |
[11] |
HO D H, CHOI Y Y, JO S B, et al. Sensing with MXenes: progress and prospects. Advanced Materials, 2021, 33(47): 2005846.
DOI URL |
[12] |
SU T Y, LIU N S, GAO Y H, et al. MXene/cellulose nanofiber- foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy, 2021, 87: 106151.
DOI URL |
[13] |
NAGUIB M, BARSOUM M W, GOGOTSI Y. Ten years of progress in the synthesis and development of MXenes. Advanced Materials, 2021, 33(39): 2103393.
DOI URL |
[14] |
VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372(6547): eabf1581.
DOI URL |
[15] |
WANG Y X, YUE Y, CHENG F, et al. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano, 2022, 16(2): 1734.
DOI URL |
[16] |
CHEN J X, LI Z L, NI F L, et al. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Materials Horizons, 2020, 7(7): 1828.
DOI URL |
[17] | LI M, HUANG Q. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes. Journal of Inorganic Materials, 2019, 35(1): 1. |
[18] |
NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322.
DOI PMID |
[19] |
ZHANG J F, CAO H Y, WANG H B. Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017, 32(6): 561.
DOI URL |
[20] |
URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385.
DOI URL |
[21] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019, 141(11): 4730.
DOI PMID |
[22] |
LI T F, YAO L L, LIU Q L, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 2018, 57(21): 6115.
DOI URL |
[23] |
WU Z G, WEI L S, TANG S W, et al. Recent progress in Ti3C2Tx MXene-based flexible pressure sensors. ACS Nano, 2021, 15(12): 18880.
DOI URL |
[24] |
KAMYSBAYEV V, FILATOV A S, HU H C, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369(6506): 979.
DOI PMID |
[25] |
CHAE Y, KIM S J, CHO S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale, 2019, 11(17): 8387.
DOI URL |
[26] |
SEREDYCH M, SHUCK C E, PINTO D, et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chemistry of Materials, 2019, 31(9): 3324.
DOI URL |
[27] |
PERSSON I, HALIM J, HANSEN T W, et al. How much oxygen can a MXene surface take before it breaks? Advanced Functional Materials, 2020, 30(47): 1909005.
DOI URL |
[28] |
ZHAO X F, VASHISTH A, BLIVIN J W, et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Advanced Materials Interfaces, 2020, 7(20): 2000845.
DOI URL |
[29] |
LONG S S, FENG Y C, HE F L, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy, 2021, 85: 105973.
DOI URL |
[30] |
MA Y N, YUE Y, ZHANG H, et al. 3D synergistical MXene/ reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano, 2018, 12(4): 3209.
DOI URL |
[31] |
YUE Y, LIU N S, LIU W J, et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy, 2018, 50: 79.
DOI URL |
[32] |
SUN X, YAO F L, LI J J. Nanocomposite hydrogel-based strain and pressure sensors: a review. Journal of Materials Chemistry A, 2020, 8(36): 18605.
DOI URL |
[33] |
ZHANG Y Z, LEE K H, ANJUM D H, et al. MXenes stretch hydrogel sensor performance to new limits. Science Advances, 2018, 4(6): eaat0098.
DOI URL |
[34] | ZHANG Y L, CHEN K X, LI Y S, et al. High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor. ACS Applied Materials & Interfaces, 2019, 11(50): 47350. |
[35] |
LIAO H, GUO X L, WAN P B, et al. Conductive MXene nanocomposite organohydrogel for flexible, healable, low- temperature tolerant strain sensors. Advanced Functional Materials, 2019, 29(39): 1904507.
DOI URL |
[36] |
ZHENG Y J, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chemical Engineering Journal, 2021, 420: 127720.
DOI URL |
[37] | MA C, YUAN Q, DU H S, et al. Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring. ACS Applied Materials & Interfaces, 2020, 12(30): 34226. |
[38] |
CHAO M Y, HE L Z, GONG M, et al. Breathable Ti3C2Tx MXene/ protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano, 2021, 15(6): 9746.
DOI URL |
[39] |
WANG K, LOU Z, WANG L L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 2019, 13(8): 9139.
DOI PMID |
[40] |
LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/ silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Advanced Functional Materials, 2019, 29(44): 1905197.
DOI URL |
[41] |
RIM Y S, BAE S H, CHEN H J, et al. Recent progress in materials and devices toward printable and flexible sensors. Advanced Materials, 2016, 28(22): 4415.
DOI URL |
[42] | QIN R Z, HU M J, LI X, et al. A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor. Microsystems & Nanoengineering, 2021, 7(1): 100. |
[43] |
TAN X, WANG S, YOU Z, et al. High performance porous triboelectric nanogenerator based on silk fibroin@MXene composite aerogel and PDMS sponge. ACS Materials Letters, 2023, 5(7): 1929.
DOI URL |
[44] |
TAN D C, JIANG C M, SUN N, et al. Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy, 2021, 90: 106528.
DOI URL |
[45] | HAN R, ZHENG L, LI G Z, et al. Self-poled poly(vinylidene fluoride)/MXene piezoelectric energy harvester with boosted power generation ability and the roles of crystalline orientation and polarized interfaces. ACS Applied Materials & Interfaces, 2021, 13(39): 46738. |
[46] |
LEI D D, ZHANG Q X, LIU N S, et al. An ion channel-induced self-powered flexible pressure sensor based on potentiometric transduction mechanism. Advanced Functional Materials, 2022, 32(5): 2108856.
DOI URL |
[47] |
ZHAN H L, XIONG Z Y, CHENG C, et al. Solvation-involved nanoionics: new opportunities from 2D nanomaterial laminar membranes. Advanced Materials, 2020, 32(18): 1904562.
DOI URL |
[48] |
YUE Y, LIU N S, SU T Y, et al. Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Advanced Functional Materials, 2023, 33(13): 2211613.
DOI URL |
[1] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[2] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[3] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[4] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[5] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[6] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[7] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[8] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. |
[9] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[10] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[11] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[12] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[13] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[14] | DING Haoming, LI Mian, LI Youbing, CHEN Ke, XIAO Yukun, ZHOU Jie, TAO Quanzheng, Johanna Rosen, YIN Hang, BAI Yuelei, ZHANG Bikun, SUN Zhimei, WANG Junjie, ZHANG Yiming, HUANG Zhenying, ZHANG Peigen, SUN Zhengming, HAN Meikang, ZHAO Shuang, WANG Chenxu, HUANG Qing. Progress in Structural Tailoring and Properties of Ternary Layered Ceramics [J]. Journal of Inorganic Materials, 2023, 38(8): 845-884. |
[15] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||