Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (2): 195-203.DOI: 10.15541/jim20230437
• PERSPECTIVE • Previous Articles Next Articles
DENG Shungui1,2(), ZHANG Chuanfang1()
Received:
2023-09-24
Revised:
2023-10-15
Published:
2023-11-10
Online:
2023-11-10
Contact:
ZHANG Chuanfang, professor. E-mail: chuanfang.zhang@scu.edu.cnAbout author:
DENG Shungui (1996-), male, PhD candidate. E-mail: shungui.deng@empa.ch
Supported by:
CLC Number:
DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices[J]. Journal of Inorganic Materials, 2024, 39(2): 195-203.
Fig. 2 Diagram of the four main printing technologies for MXene ink Screen printing[37], inkjet printing[38], transfer printing[39] and extrusion printing[40]
Fig. 4 Schematic illustration of direct MXene ink printing[38] Aqueous Ti3C2Tx inks are designed for extrusion printing while the Ti3C2Tx organic inks are used for inkjet printing
Fig. 6 (a) Schematic illustration of room-temperature direct printing of additive-free MXene inks for flexible wireless electronics; (b) Mechanism and (c) optical image of flexible MXene RFID temperature tag; (d) MXene RFID sensors to monitor surface temperature; (e) Fabrication of MXene NFC tags and (f) examples of application[53]
[1] |
LI N, PENG J H, ONG W J, et al. Mxenes: an emerging platform for wearable electronics and looking beyond. Matter, 2021, 4(2): 377.
DOI URL |
[2] |
ABDOLHOSSEINZADEH S, ZHANG C F, SCHNEIDER R, et al. A universal approach for room-temperature printing and coating of 2d materials. Advanced Materials, 2022, 34(4): 2103660.
DOI URL |
[3] |
CAI X K, LUO Y T, LIU B, et al. Preparation of 2d material dispersions and their applications. Chemical Society Reviews, 2018, 47(16): 6224.
DOI PMID |
[4] |
TORRISI F, HASAN T, WU W P, et al. Inkjet-printed graphene electronics. ACS Nano, 2012, 6 (4): 2992.
DOI PMID |
[5] |
ZHANG Y Z, WANG Y, CHENG T, et al. Printed supercapacitors: Materials, printing and applications. Chemical Society Reviews, 2019, 48(12): 3229.
DOI URL |
[6] |
SECOR E B, AHN B Y, GAO T Z, et al. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Advanced Materials, 2015, 27(42): 6683.
DOI |
[7] |
LI J T, NAIINI M M, VAZIRI S, et al. Inkjet printing of MoS2. Advanced Functional Materials, 2014, 24(41): 6524.
DOI URL |
[8] |
JUN H Y, RYU S O, KIM S H, et al. Inkjet printing of few-layer enriched black phosphorus nanosheets for electronic devices. Advanced Electronic Materials, 2021, 7(10): 2100577.
DOI URL |
[9] |
UZUN S, SCHELLING M, HANTANASIRISAKUL K, et al. Additive-free aqueous mxene inks for thermal inkjet printing on textiles. Small, 2021, 17(1): 2006376.
DOI URL |
[10] |
WANG Z, LIANG X W, ZHAO T, et al. Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks. Journal of Materials Science-Materials in Electronics, 2017, 28(22): 16939.
DOI URL |
[11] |
LIU F X, QIU X B, XU J F, et al. High conductivity and transparency of graphene-based conductive ink: prepared from a multi-component synergistic stabilization method. Progress in Organic Coatings, 2019, 133: 125.
DOI URL |
[12] |
LI X K, LI M J, ZONG L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Advanced Functional Materials, 2018, 28(39): 1804197.
DOI URL |
[13] |
ZHAO L H, HONG C Y, WANG C H, et al. Enhancement of the adhesion strength of water-based ink binder based on waterborne polyurethane. Progress in Organic Coatings, 2023, 183: 107765.
DOI URL |
[14] |
AGHAYAR Z, MALAKI M, ZHANG Y Z. MXene-based ink design for printed applications. Nanomaterials, 2022, 12 (23): 4346.
DOI URL |
[15] |
ZHANG C F. Interfacial assembly of two-dimensional MXenes. Journal of Energy Chemistry, 2021, 60: 417.
DOI |
[16] |
NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322.
DOI PMID |
[17] | COME J, NAGUIB M, ROZIER P, et al. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. Journal of the Electrochemical Society, 2012, 159(8): 1368. |
[18] |
ZHANG C, MA Y L, ZHANG X T, et al. Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy & Environmental Materials, 2020, 3(1): 29.
DOI URL |
[19] |
ABDOLHOSSEINZADEH S, JIANG X T, ZHANG H, et al. Perspectives on solution processing of two-dimensional MXenes. Materials Today, 2021, 48: 214.
DOI URL |
[20] |
ZHANG Y Z, WANG Y, JIANG Q, et al. Mxene printing and patterned coating for device applications. Advanced Materials, 2020, 32(21): 1908486.
DOI URL |
[21] |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633.
DOI URL |
[22] |
ABDOLHOSSEINZADEH S, HEIER J, ZHANG C F. Printing and coating mxenes for electrochemical energy storage devices. Journal of Physics-Energy, 2020, 2(3): 031004.
DOI |
[23] |
SREENILAYAM S P, UL AHAD I, NICOLOSI V, et al. MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43: 99.
DOI URL |
[24] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two- dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248.
DOI URL |
[25] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 2014, 516(7529): 78.
DOI |
[26] |
URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385.
DOI URL |
[27] |
LI T F, YAO L L, LIU Q L, et al. Fluorine-free synthesis of high- purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 2018, 57(21): 6115.
DOI URL |
[28] |
SHEN M, JIANG W Y, LIANG K, et al. One-pot green process to synthesize MXene with controllable surface terminations using molten salts. Angewandte Chemie International Edition, 2021, 60(52): 27013.
DOI URL |
[29] |
ZHANG C F J, PINILLA S, MCEYOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chemistry of Materials, 2017, 29(11): 4848.
DOI URL |
[30] |
NATU V, HART J L, SOKOL M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angewandte Chemie International Edition, 2019, 58(36): 12655.
DOI URL |
[31] |
ZHAO X F, VASHISTH A, PREHN E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter, 2019, 1(2): 513.
DOI URL |
[32] |
FAN Z M, HE H Y, YU J X, et al. Binder-free Ti3C2Tx MXene doughs with high redispersibility. ACS Materials Letters, 2020, 2(12): 1598.
DOI URL |
[33] |
DENG S G, GUO T Z, NUEESCH F, et al. Stable MXene dough with ultrahigh solid fraction and excellent redispersibility toward efficient solution processing and industrialization. Advanced Science, 2023, 10(19): 2300660.
DOI URL |
[34] |
AKUZUM B, MALESKI K, ANASORI B, et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing mxenes. ACS Nano, 2018, 12 (3): 2685.
DOI PMID |
[35] |
GLASSER A, CLOUTET É, HADZIIOANNOU G, et al. Tuning the rheology of conducting polymer inks for various deposition processes. Chemistry of Materials, 2019, 31(17): 6936.
DOI URL |
[36] |
LI H P, LIANG J J. Recent development of printed micro- supercapacitors: printable materials, printing technologies, and perspectives. Advanced Materials, 2020, 32(3): 1805864.
DOI URL |
[37] |
ABDOLHOSSEINZADEH S, SCHNEIDER R, VERMA A, et al. Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Advanced Materials, 2020, 32(17): 2000716.
DOI URL |
[38] |
ZHANG C F, MCKEON L, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications, 2019, 10: 1795.
DOI PMID |
[39] |
ZHANG C F, KREMER M P, SERAL-ASCASO A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Advanced Functional Materials, 2018, 28(9): 1705506.
DOI URL |
[40] |
YANG W J, YANG J, BYUN J J, et al. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Advanced Materials, 2019, 31(37): 1902725.
DOI URL |
[41] |
WU Z Y, LIU S R, HAO Z J, et al. MXene contact engineering for printed electronics. Advanced Science, 2023, 10(19): 2207174.
DOI URL |
[42] |
LUOMA E, VALIMAKI M, OLLILA J, et al. Bio-based polymeric substrates for printed hybrid electronics. Polymers, 2022, 14(9): 1863.
DOI URL |
[43] |
LINGHU C H, ZHANG S, WANG C J, et al. Transfer printing techniques for flexible and stretchable inorganic electronics. npj Flexible Electronics, 2018, 2: 26.
DOI |
[44] |
CAREY T, CACOVICH S, DIVITINI G, et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nature Communications, 2017, 8: 1202.
DOI PMID |
[45] |
MA J X, ZHENG S H, CAO Y X, et al. Aqueous MXene/ph1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Advanced Energy Materials, 2021, 11(23): 2100746.
DOI URL |
[46] |
HU G H, KANG J, NG L W T, et al. Functional inks and printing of two-dimensional materials. Chemical Society Reviews, 2018, 47(9): 3265.
DOI PMID |
[47] |
SAADI M, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: a 3D printing technology for diverse materials. Advanced Materials, 2022, 34(28): 2108855.
DOI URL |
[48] |
AZADMANJIRI J, REDDY T N, KHEZRI B, et al. Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications. Journal of Materials Chemistry A, 2022, 10(9): 4533.
DOI URL |
[49] |
ZHANG C F, PARK S N, SERAL-ASCASO A, et al. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nature Communications, 2019, 10: 849.
DOI PMID |
[50] |
TANG H, LI W L, PAN L M, et al. A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Advanced Functional Materials, 2019, 29(30): 1901907.
DOI URL |
[51] |
TANG H, LI W L, PAN L M, et al. In situ formed protective barrier enabled by sulfur@titanium carbide MXene ink for achieving high-capacity, long lifetime Li-S batteries. Advanced Science, 2018, 5(9): 1800502.
DOI URL |
[52] | CHEN M J, LI L L, DENG Z M, et al. Two-dimensional janus MXene inks for versatile functional coatings on arbitrary substrates. ACS Applied Materials & Interfaces, 2023, 15(3): 4591. |
[53] |
SHAO Y Z, WEI L S, WU X Y, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nature Communications, 2022, 13: 3223
DOI PMID |
[54] | SONG Y, TAY R Y, LI J, et al. 3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance. Science Advances, 2023, 9(37): 6492. |
[1] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[2] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[3] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[4] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[5] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[6] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[7] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[8] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. |
[9] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[10] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[11] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[12] | DING Haoming, LI Mian, LI Youbing, CHEN Ke, XIAO Yukun, ZHOU Jie, TAO Quanzheng, Johanna Rosen, YIN Hang, BAI Yuelei, ZHANG Bikun, SUN Zhimei, WANG Junjie, ZHANG Yiming, HUANG Zhenying, ZHANG Peigen, SUN Zhengming, HAN Meikang, ZHAO Shuang, WANG Chenxu, HUANG Qing. Progress in Structural Tailoring and Properties of Ternary Layered Ceramics [J]. Journal of Inorganic Materials, 2023, 38(8): 845-884. |
[13] | SHI Zhe, LIU Weiye, ZHAI Dong, XIE Jianjun, ZHU Yufang. Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties [J]. Journal of Inorganic Materials, 2023, 38(7): 763-770. |
[14] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[15] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||