Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (2): 162-170.DOI: 10.15541/jim20230400
• PERSPECTIVE • Previous Articles Next Articles
BA Kun1(), WANG Jianlu1,2(), HAN Meikang2()
Received:
2023-09-01
Revised:
2023-09-28
Published:
2023-10-07
Online:
2023-10-07
Contact:
HAN Meikang, professor. E-mail: mkhan@fudan.edu.cn;About author:
BA Kun (1989-), male, PhD. E-mail: kun_ba@fudan.edu.cn
Supported by:
CLC Number:
BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene[J]. Journal of Inorganic Materials, 2024, 39(2): 162-170.
Fig. 1 Infrared radiation properties of MXene (a) Schematic of infrared reflection and emission with MXene[18]; (b) Absorptance/emissivity spectra of Ti3C2Tx film at visible and infrared ranges[23]; (c) Room-temperature infrared emissivity spectra of different MXene coatings at wavelength range of 1-25 μm[18]; (d) Relationship between average infrared emissivity (8-14 μm) and electrical conductivity of MXene coatings[18]
Fig. 2 Infrared identification/camouflage with MXenes (a) Infrared thermal image of MXene, graphene, stainless steel, graphene oxide, and montmorillonite films on an object at 508 ℃[27]; (b) Infrared thermal images of security flower[28]; (c) Visible and (d) infrared images of different MXene coatings on a hot plate at 70 ℃, showing the identification capability of MXenes due to their varying colors and infrared emissivity[18]; (e) Infrared camera images of the patterned device before and after local near infrared (NIR) irradiation to demonstrate information encryption and display applications[29]
Fig. 3 Surface plasmon of MXene (a) Electronenergy loss spectroscopy (EELS) analysis of a Ti3C2Tx flake[33]; (b) EELS fitted intensity maps of the corresponding surface plasmon modes and inherent interband transition sustained by the flake at the energy losses[33]; (c) Schematic of Ti3C2Tx based nanodisks array[34]; (d) Improvement of absorption spectra of patterned Ti3C2Tx film[34]
Fig. 4 Photothermal conversion with MXene (a) Schematic of photothermal energy conversion and storage of the PEG/Ti3C2Tx composites[42]; (b) Temperature evolution curves of the composites under the simulated sunlight irradiation[42]; (c) Temperature change of the coated crystal with the increasing power of infrared radiation[43]; (d) Time-dependent temperature increase of the surface of the composites upon illumination with infrared light (744 mW) at 25 ℃[43]; (e) Temperature elevations at the tumor sites of 4T1-tumor-bearing mice under different treatments during laser irradiation[39]; (f) Time-dependent tumor growth curves after different treatments[39]
Fig. 5 Infrared photodetection with MXene (a) Structural diagram of Ti3C2Tx-RAN photodetector[49]; (b) Dynamic optical response curves of Au-RAN and Ti3C2T-RAN photodetector with insets showing optical photos of the device[49]; (c) Schematic of the MAPbI3/Nb2CTx photodiode[50]; (d) Responsivity and detectivity of the MAPbI3/Nb2CTx photodiode under different white light intensities[50]
[1] |
VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372(6547): eabf1581.
DOI URL |
[2] |
DING H M, LI M, LI Y B, et al. Progress in structural tailoring and properties of ternary layered ceramics. Journal of Inorganic Materials, 2023, 38(8): 845.
DOI URL |
[3] |
BA K, PU D, YANG X, et al. Billiard catalysis at Ti3C2 MXene/ MAX heterostructure for efficient nitrogen fixation. Applied Catalysis B: Environmental, 2022, 317: 121755.
DOI URL |
[4] |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633.
DOI URL |
[5] |
MATTHEWS K, ZHANG T, SHUCK C E, et al. Guidelines for synthesis and processing of chemically stable two-dimensional V2CTx MXene. Chemistry of Materials, 2021, 34(2): 499.
DOI URL |
[6] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248.
DOI URL |
[7] |
SHEKHIREV M, SHUCK C E, SARYCHEVA A, et al. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science, 2021, 120: 100757.
DOI URL |
[8] |
LI X, HUANG Z, SHUCK C E, et al. MXene chemistry, electrochemistry and energy storage applications. Nature Review Chemistry, 2022, 6(6): 389.
DOI |
[9] |
HAN M, MALESKI K, SHUCK C E, et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. Journal of the American Chemical Society, 2020, 142(45): 19110.
DOI PMID |
[10] | LI M, HUANG Q. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes. Journal of Inorganic Materials, 2020, 35(1): 1. |
[11] |
XU X, GUO T, LANZA M, et al. Status and prospects of MXene-based nanoelectronic devices. Matter, 2023, 6(3): 800.
DOI URL |
[12] |
LIPATOV A, LU H, ALHABEB M, et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science Advances, 2018, 4(6): eaat0491.
DOI URL |
[13] |
ZHANG D, SHAH D, BOLTASSEVA A, et al. MXenes for photonics. ACS Photonics, 2022, 9(4): 1108.
DOI URL |
[14] |
MAUCHAMP V, BUGNET M, BELLIDO E P, et al. Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Physical Review B, 2014, 89(23): 235428.
DOI URL |
[15] |
ZHAO T, XIE P, WAN H, et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5-10 THz band. Nature Photonics, 2023, 17(7): 622.
DOI |
[16] |
HAN M, ZHANG D, SHUCK C E, et al. Electrochemically modulated interaction of MXenes with microwaves. Nature Nanotechnology, 2023, 18 (4): 373.
DOI PMID |
[17] |
HAN M, GOGOTSI Y. Perspectives for electromagnetic radiation protection with MXenes. Carbon, 2023, 204: 17.
DOI URL |
[18] |
HAN M, ZHANG D, SINGH A, et al. Versatility of infrared properties of MXenes. Materials Today, 2023, 64: 31.
DOI URL |
[19] |
YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies. Advanced Materials, 2020, 32(9): 1906769.
DOI URL |
[20] |
UZUN S, HAN M, STROBEL C J, et al. Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding. Carbon, 2021, 174: 382.
DOI URL |
[21] |
ZHANG Y Z, WANG Y, JIANG Q, et al. MXene printing and patterned coating for device applications. Advanced Materials, 2020, 32(21): 1908486.
DOI URL |
[22] |
YUN T, LEE G S, CHOI J, et al. Multidimensional Ti3C2Tx MXene architectures via interfacial electrochemical self-assembly. ACS Nano, 2021, 15 (6): 10058.
DOI URL |
[23] |
LI Y, XIONG C, HUANG H, et al. 2D Ti3C2Tx MXenes: visible black but infrared white materials. Advanced Materials, 2021, 33(41): 2103054.
DOI URL |
[24] |
LU F, SHI D, TAN P, et al. A novel infrared electrochromic device based on Ti3C2Tx MXene. Chemical Engineering Journal, 2022, 450: 138324.
DOI URL |
[25] |
DILLON A D, GHIDIU M J, KRICK A L, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 2016, 26(23): 4162.
DOI URL |
[26] |
HAN M, SHUCK C E, SINGH A, et al. Efficient microwave absorption with Vn+1CnTx MXenes. Cell Reports Physical Science, 2022, 3(10): 101073.
DOI URL |
[27] |
LI L, SHI M, LIU X, et al. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Advanced Functional Materials, 2021, 31(35): 2101381.
DOI URL |
[28] |
DENG Z, LI L, TANG P, et al. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano, 2022, 16(10): 16976.
DOI PMID |
[29] |
CAI G, CIOU J H, LIU Y, et al. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Science Advances, 2019, 5(7): eaaw7956.
DOI URL |
[30] |
CHEN Y H, LI J, REN M L, et al. Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/ dielectric interfaces. Applied Physics Letters, 2011, 98(26): 261912.
DOI URL |
[31] |
BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824.
DOI |
[32] | COLIN-ULLOA E, FITZGERALD A, MONTAZERI K, et al. Ultrafast spectroscopy of plasmons and free carriers in 2D MXenes. Advanced Materials, 2023, 35(8): e2208659. |
[33] |
EL-DEMELLAWI J K, LOPATIN S, YIN J, et al. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano, 2018, 12(8): 8485.
DOI URL |
[34] |
CHAUDHURI K, ALHABEB M, WANG Z, et al. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics, 2018, 5(3): 1115.
DOI URL |
[35] | GHOUSSOUB M, XIA M, DUCHESNE P N, et al. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy & Environmental Science, 2019, 12(4): 1122. |
[36] |
ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation. Nature Reviews Materials, 2020, 5(5): 388.
DOI |
[37] | ZHANG B, GU Q, WANG C, et al. Self-assembled hydrophobic/ hydrophilic porphyrin-Ti3C2Tx MXene Janus membrane for dual-functional enabled photothermal desalination. ACS Applied Materials & Interfaces, 2021, 13(3): 3762. |
[38] |
ZHANG B, WONG P W, GUO J, et al. Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nature Communications, 2022, 13: 3315.
DOI |
[39] |
LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 2017, 139(45): 16235.
DOI PMID |
[40] |
CHENG P, WANG D, SCHAAF P. A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications. Advanced Sustainable Systems, 2022, 6(9): 2200115.
DOI URL |
[41] |
XU D, LI Z, LI L, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Advanced Functional Materials, 2020, 30(47): 2000712.
DOI URL |
[42] |
FAN X, LIU L, JIN X, et al. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. Journal of Materials Chemistry A, 2019, 7(23): 14319.
DOI URL |
[43] |
YANG X, LAN L, LI L, et al. Collective photothermal bending of flexible organic crystals modified with MXene-polymer multilayers as optical waveguide arrays. Nature Communications, 2023, 14: 3627.
DOI |
[44] |
XI D, XIAO M, CAO J, et al. NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion efficiency for photothermal therapy. Advanced Materials, 2020, 32(11): 1907855.
DOI URL |
[45] |
ZHAO X, WANG L Y, TANG C Y, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and Joule heating for healthcare and medical therapy applications. ACS Nano, 2020, 14(7): 8793.
DOI URL |
[46] |
BA K, WANG J. Advances in solution-processed quantum dots based hybrid structures for infrared photodetector. Materials Today, 2022, 58: 119.
DOI URL |
[47] |
ROGALSKI A, ANTOSZEWSKI J, FARAONE L. Third-generation infrared photodetector arrays. Journal of Applied Physics, 2009, 105(9): 091101.
DOI URL |
[48] |
TANG J, WAN H, CHANG L, et al. Tunable infrared sensing properties of MXenes enabled by intercalants. Advanced Optical Materials, 2022, 10(17): 2200623.
DOI URL |
[49] |
HU C, CHEN H, LI L, et al. Ti3C2Tx MXene-RAN van der Waals heterostructure-based flexible transparent NIR photodetector array for 1024 pixel image sensing application. Advanced Materials Technologies, 2022, 7(7): 2101639.
DOI URL |
[50] |
LIU Z, EL-DEMELLAWI J K, BAKR O M, et al. Plasmonic Nb2CTx MXene-MAPbI3 heterostructure for self-powered visible-NIR photodiodes. ACS Nano, 2022, 16(5): 7904.
DOI URL |
[51] |
MALESKI K, SHUCK C E, FAFARMAN A T, et al. The broad chromatic range of two-dimensional transition metal carbides. Advanced Optical Materials, 2020, 9(4): 2001563.
DOI URL |
[52] |
HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes’ electronic properties through termination and intercalation. Nature Communications, 2019, 10: 522.
DOI |
[53] |
NGUYEN T T, MURALI G, PATEL M, et al. MXene-integrated metal oxide transparent photovoltaics and self-powered photodetectors. ACS Applied Energy Materials, 2022, 5(6): 7134.
DOI URL |
[54] |
XU H, REN A, WU J, et al. Recent advances in 2D MXenes for photodetection. Advanced Functional Materials, 2020, 30(24): 2000907.
DOI URL |
[1] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[2] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[3] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[4] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[5] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[6] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[7] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[8] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. |
[9] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[10] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[11] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[12] | DING Haoming, LI Mian, LI Youbing, CHEN Ke, XIAO Yukun, ZHOU Jie, TAO Quanzheng, Johanna Rosen, YIN Hang, BAI Yuelei, ZHANG Bikun, SUN Zhimei, WANG Junjie, ZHANG Yiming, HUANG Zhenying, ZHANG Peigen, SUN Zhengming, HAN Meikang, ZHAO Shuang, WANG Chenxu, HUANG Qing. Progress in Structural Tailoring and Properties of Ternary Layered Ceramics [J]. Journal of Inorganic Materials, 2023, 38(8): 845-884. |
[13] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[14] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[15] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||