Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (2): 153-161.DOI: 10.15541/jim20230306
Special Issue: 【信息功能】敏感陶瓷(202409); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
• PERSPECTIVE • Previous Articles Next Articles
LI Lei1(), CHENG Qunfeng1,2,3(
)
Received:
2023-07-05
Revised:
2023-08-07
Published:
2023-08-31
Online:
2023-08-31
Contact:
CHENG Qunfeng, professor. E-mail: cheng@buaa.edu.cnAbout author:
LI Lei (1995-), male, PhD candidate. E-mail: lilei9512@buaa.edu.cn
Supported by:
CLC Number:
LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites[J]. Journal of Inorganic Materials, 2024, 39(2): 153-161.
Fig. 1 Structural diagram and mechanical properties of MXenes (a) Structure of MAX phases and their corresponding MXenes[6]; (b) Strain-stress curves of MXenes during tensile loading[8]; (c) Scheme of nanoindentation of a suspended Ti3C2Tx membrane with an AFM tip[9]; (d) Experimental indentation curves for monolayer and bilayer Ti3C2Tx membranes during loading[9]
Fig. 2 Paper analysis of high performance MXenes nanocomposites (a) Number of papers focused on MXene nanocomposites; (b) Proportion of MXene nanocomposites papers on mechanical properties (source: Web of Science, up to 2022-12-31)
Fig. 4 Recent advances in high performance MXenes nanocomposites (a) Fabrication of MGP-T fiber via continuous wet spinning and thermal drawing; (b) SEM cross-sections, (c) WAXS/SAXS patterns and (d) stress-strain curves of MGP-T fiber[27]; (e) Structural models of MXene and sequentially bridged MXene films; (f) Stress-strain curves of MXene and sequentially bridged MXene films[26]; (g) Schematic illustration of the assembly process through bidirectional freeze-casting to prepare conductive nacre; SEM images of (h) natural nacre and (i) conductive nacre; (j) Flexural stress as a function of flexural strain for the conductive, artificial, and natural nacre[16]
Fig. 5 Functional applications of high strength MXenes nanocomposites (a) Photograph of several meters long MGP-T fibers; (b) Temperature-time curves of MGP-T fibers when applied DC voltage of 2-8 V; (c) Photographs of MGP-T fibers with different letter shapes when applied various DC voltage of 2-8 V[23]; (d) Photograph of sequentially densified MXene; (e) Mid-IR emissivity spectra and (f) IR photographs on a hot plate with a constant temperature of 100 ℃for LM and SDM films before and after storage for 10 d in humid air with 100% relative humidity[24]; (g) EMI SET of artificial and conductive nacre; (h) SET, SEA, and SER at 8.2 GHz of artificial nacre and conductive nacre; (i) Schematic illustration of the proposed EMI shielding mechanism of conductive nacre[14]
[1] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248.
DOI URL |
[2] |
MOHAMMADI A V, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372(6547): eabf1581.
DOI URL |
[3] |
WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis of 2D MXenes. Advanced Materials, 2021, 33(39): 2103148.
DOI URL |
[4] |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chemistry of Materials, 2017, 29(18): 7633.
DOI URL |
[5] |
LIM K R G, SHEKHIREV M, WYATT B C, et al. Fundamentals of MXene synthesis. Nature Synthesis, 2022, 1(8): 601.
DOI |
[6] |
NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992.
DOI URL |
[7] |
WENG G M, LI J, ALHABEB M, et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Advanced Functional Materials, 2018, 28(44): 1803360
DOI URL |
[8] | BORYSIUK V N, MOCHALIN V N, GOGOTSI Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology, 2015, 26(26): 256705. |
[9] |
LIPATOV A, LU H, ALHABEB M, et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science Advances, 2018, 4(6): eaat0491.
DOI URL |
[10] |
SEYEDIN S, YANZA E R S, RAZAL J M. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. Journal of Materials Chemistry A, 2017, 5(46): 24076.
DOI URL |
[11] |
LEVITT A, SEYEDIN S, ZHANG J, et al. Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small, 2020, 16(26): 2002158.
DOI URL |
[12] |
UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns. Advanced Functional Materials, 2019, 29(45): 1905015.
DOI URL |
[13] | LI L, CAO Y, LIU X, et al. Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Applied Materials & Interfaces, 2020, 12(24): 27350. |
[14] | ZHANG J, KONG N, UZUN S, et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Advanced Materials, 2020, 32(23): e2001093. |
[15] |
JIN X, WANG J, DAI L, et al. Flame-retardant poly(vinyl alcohol)/ MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chemical Engineering Journal, 2020, 380: 122475.
DOI URL |
[16] |
WANG H, LU R, YAN J, et al. Tough and conductive nacre- inspired MXene/epoxy layered bulk nanocomposites. Angewandte Chemie International Edition, 2022, 62(9): e202216874.
DOI URL |
[17] |
WANG L, QIU H, SONG P, et al. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Composites Part A-Applied Science and Manufacturing, 2019, 123: 293.
DOI URL |
[18] |
ZHUANG Z, CHEN H, LI C. Robust pristine mxene films with superhigh electromagnetic interference shielding effectiveness via spatially confined evaporation. ACS Nano, 2023, 17(11): 10628.
DOI URL |
[19] |
LI L, CHENG Q. Bioinspired nanocomposite films with graphene and MXene. Giant, 2022, 12: 100117.
DOI URL |
[20] |
WAN S, LI X, WANG Y, et al. Strong sequentially bridged MXene sheets. PNAS, 2020, 117(44): 27154.
DOI PMID |
[21] |
LI L, CHENG Q. MXene based nanocomposite films. Exploration, 2022, 2(4): 20220049.
DOI URL |
[22] |
LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. PNAS, 2014, 111(47): 16676.
DOI PMID |
[23] |
YANG Q, XU Z, FANG B, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5(42): 22113.
DOI URL |
[24] |
CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583.
DOI URL |
[25] |
SHIN H, EOM W, LEE K H, et al. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano, 2021, 15(2): 3320.
DOI URL |
[26] |
WAN S, LI X, CHEN Y, et al. High-strength scalable MXene films through bridging-induced densification. Science, 2021, 374(6563): 96.
DOI PMID |
[27] |
ZHOU T, YU Y, HE B, et al. Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nature Communications, 2022, 13: 4564.
DOI PMID |
[28] |
WAN S, LI X, CHEN Y, et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nature Communications, 2022, 13: 7340.
DOI |
[29] |
LIU J, LIU Z, ZHANG H B, et al. Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Advanced Electronic Materials, 2020, 6(1): 1901094.
DOI URL |
[30] |
MA Z, KANG S, MA J, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano, 2020, 14(7): 8368.
DOI URL |
[31] |
LEE G S, YUN T, KIM H, et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722.
DOI URL |
[32] |
WAN Y, XIONG P, LIU J, et al. Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano, 2021, 15(5): 8439.
DOI URL |
[33] |
LIPTON J, WENG G M, ALHABEB M, et al. Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale, 2019, 11(42): 20295.
DOI PMID |
[34] |
ZHOU T, WU C, WANG Y, et al. Super-tough MXene-functionalized graphene sheets. Nature Communications, 2020, 11: 2077.
DOI PMID |
[35] | LEI C, ZHANG Y, LIU D, et al. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Applied Materials & Interfaces, 2020, 12(23): 26485. |
[36] | JI C, WANG Y, YE Z, et al. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials. ACS Applied Materials & Interfaces, 2020, 12(21): 24298. |
[37] |
MATHIS T S, MALESKI K, GOAD A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano, 2021, 15(4): 6420.
DOI URL |
[38] |
LIU R, LI W. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega, 2018, 3(3): 2609.
DOI URL |
[39] |
GHOLIVAND H, FULADI S, HEMMAT Z, et al. Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes. Journal of Applied Physics, 2019, 126(6): 065101.
DOI URL |
[40] |
CHEN L, SHI X, YU N, et al. Measurement and analysis of thermal conductivity of Ti3C2Tx MXene films. Materials (Basel), 2018, 11(9): 1701.
DOI URL |
[41] |
NGUYEN V P, LIM M, KIM K S, et al. Drastically increased electrical and thermal conductivities of Pt-infiltrated MXenes. Journal of Materials Chemistry A, 2021, 9(17): 10739.
DOI URL |
[42] |
ZHA X H, ZHOU J, ZHOU Y, et al. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale, 2016, 8(11): 6110.
DOI URL |
[43] |
LI L, SHI M, LIU X, et al. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Advanced Functional Materials, 2021, 31(35): 2101381.
DOI URL |
[44] |
LI Y, XIONG C, HUANG H, et al. 2D Ti3C2Tx MXenes: visible black but infrared white materials. Advanced Materials, 2021, 33(41): 2103054.
DOI URL |
[45] |
LIU X, JIN X, LI L, et al. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. Journal of Materials Chemistry A, 2020, 8(25): 12526.
DOI URL |
[46] |
LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/ silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Advanced Functional Materials, 2019, 29(44): 1905197.
DOI URL |
[47] |
SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137.
DOI PMID |
[48] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2(2): 17. |
[49] | YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies. Advanced Materials, 2020, 32(9): e1906769. |
[50] |
KANG Y, HU T, WANG Y, et al. Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving. Nature Communications, 2023, 14: 4075.
DOI PMID |
[51] |
YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 2017, 27(30): 1701264.
DOI URL |
[52] |
WANG K, LOU Z, WANG L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 2019, 13(8): 9139.
DOI PMID |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[11] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[12] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[13] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[14] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[15] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||