Journal of Inorganic Materials
Previous Articles Next Articles
HU Yang, XIE Min, ZHANG Xiaoyi, LI Xiang, GUO Xinwei, JIANG Nan, ZHOU Wenhan, ZHANG Shengli, ZENG Haibo
Received:2025-10-27
Revised:2026-01-07
Contact:
ZHANG Shengli, professor. E-mail: zhangslvip@njust.edu.cn;ZENG Haibo, professor. E-mail: zeng.haibo@njust.edu.cn
About author:HU Yang, PhD. E-mail: hudfyang@njust.edu.cn
Supported by:CLC Number:
HU Yang, XIE Min, ZHANG Xiaoyi, LI Xiang, GUO Xinwei, JIANG Nan, ZHOU Wenhan, ZHANG Shengli, ZENG Haibo. Research Progress on Computational and Data-Driven Environmentally Friendly Luminescent Materials[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250425.
| [1] SHAN Q, DONG Y, XIANG H, et al. Perovskite quantum dots for the next‐generation displays: Progress and prospect. Advanced Functional Materials, 2024, 34(36): 2401284. [2] CHEN F, ZHENG J, XING, et al. Applications of liquid crystal planer optical elements based on photoalignment technology in display and photonic devices. Displays, 2024, 82: 102632. [3] FAN J, HAN C, YANG G, et al. Recent progress of quantum dots light‐emitting diodes: Materials, device structures, and display applications. Advanced Materials, 2024, 36(37): 2312948. [4] AHMED T, SETH S, SAMANTA A.Boosting the photoluminescence of CsPbX3(X = Cl, Br, I)perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts.Chemistry of Materials, 2018, 30(11): 3633. [5] YIN J, ZHANG J, PAN W, et al. Fully aqua-mediated ripening of perovskite quantum dots with 98% PLQY and self-assembly into bioimaging nanoparticles. Advanced Functional Materials, 2025, e14590. [6] VARNAKAVI N, VELPUGONDA J L, LEE N, et al. In situ synthesis of Br-rich CsPbBr3 nanoplatelets: Enhanced stability and high PLQY for wide color gamut displays. Advanced Functional Materials, 2025, 35(3): 2413320. [7] BHOYAR T, JEONG S, LEE S[J], et al. Near-unity PLQY in lead-free halide perovskites and perovskite-inspired halides for light-emitting diode applications. ACS Energy Letters, 2025, 10(9): 4439. [8] WANG P.The role of temperature in the photoluminescence quantum yield(PLQY)of Ag2S-based nanocrystals.Materials Horizons, 2024, 11(23): 6158. [9] YUAN G, LI M, YU M, et al. In situ synthesis, enhanced luminescence and application in dye sensitized solar cells of Y2O3/Y2O2S:Eu3+ nanocomposites by reduction of Y2O3:Eu3+. Scientific Reports, 2016, 6: 37133. [10] HOU L, HU S, ZHANG B, et al. Spacing controlled quantum resonance in colloidal CdSe quantum dot superlattices. The Journal of Physical Chemistry Letters, 2025, 16(32): 8290. [11] NGUYEN H A, HAMMEL B F, SHARP D, et al. Colossal core/shell CdSe/CdS quantum dot emitters. ACS Nano, 2024, 18(31): 20726. [12] DOU W, GONG Y, HUANG X, et al. CdSe quantum dots enable high thermoelectric performance in solution-processed polycrystalline SnSe. Small, 2024, 20(28): 2311153. [13] YANG Z, YAO J, XU L, et al. Designer bright and fast CsPbBr3 perovskite nanocrystal scintillators for high-speed X-ray imaging. Nature Communications, 2024, 15: 8870. [14] MEHRA S, PANDEY R, MADAN[J], et al. Experimental and theoretical investigations of MAPbX3-based perovskites(X = Cl, Br, I)for photovoltaic applications. ChemistryOpen, 2024, 13(2): e202300055. [15] TORRENCE C E, LIBBY C S, NIE W, et al. Environmental and health risks of perovskite solar modules: Case for better test standards and risk mitigation solutions. iScience, 2023, 26(1): 105807. [16] HE H, DENG S, LIU Y.Environmentally friendly synthesis of quantum dots and their applications in diverse fields from the perspective of environmental compliance: A review.Discover Nano, 2025, 20(1): 132. [17] MEI L, XIE R, ZHU S, et al. Neurotoxicity study of lead-based perovskite nanoparticles. Nano Today, 2023, 50: 101830. [18] FAUSIA K H, NHARANGATT B, VINAYAKAN R N, et al. Probing the structural degradation of CsPbBr3 perovskite nanocrystals in the presence of H2O and H2S: How weak interactions and HSAB matter. ACS Omega, 2024, 9(7): 8417. [19] KALNAITYTĖ-VENGELIENĖ A, MONTVYDIENĖ D, JANUŠKAITĖ E, et al. The effects of CdSe/ZnS quantum dots on autofluorescence properties and growth of algae Desmodesmus communis: Dependence on cultivation medium. Environmental Science: Nano, 2024, 11(4): 1701. [20] HU L, ZHONG H, HE Z.Toxicity evaluation of cadmium-containing quantum dots: A review of optimizing physicochemical properties to diminish toxicity.Colloids and Surfaces B: Biointerfaces, 2021, 200: 111609. [21] YUE Z, GUO H, CHENG Y.Toxicity of perovskite solar cells.Energies, 2023, 16(10): 4007. [22] SABAHI N, SHAHROOSVAND H.Shedding light on the environmental impact of the decomposition of perovskite solar cell.Scientific Reports, 2023, 13: 18004. [23] GIROUX M S, ZAHRA Z, SALAWU O A, et al. Assessing the environmental effects related to quantum dot structure, function, synthesis and exposure. Environmental Science: Nano, 2022, 9(3): 867. [24] DOWNIE D H, ELING C J, CHARLTON B K, et al. Recycling self-assembled colloidal quantum dot supraparticle lasers. Optical Materials Express, 2024, 14(12): 2982. [25] JANG E, JANG H.Review: Quantum dot light-emitting diodes.Chemical Reviews, 2023, 123(8): 4663. [26] PAN Y Y, PAN J L, WANG Y K, et al. III-V quantum dots: A multidimensional exploration from eco-friendly materials to near infrared optoelectronic applications. Materials Today, 2025, 85: 171. [27] CHEN T, CHEN Y, LI Y, et al. A review on multiple I-III-VI quantum dots: Preparation and enhanced luminescence properties. Materials, 2023, 16(14): 5039. [28] JIN L, SELOPAL G S, TONG X, et al. Heavy-metal-free colloidal quantum dots: Progress and opportunities in solar technologies. Advanced Materials, 2024, 36(33): 2402912. [29] JAIN S, BHARTI S, BHULLAR G K, et al. I-III-VI core/shell QDs: Synthesis, characterizations and applications. Journal of Luminescence, 2020, 219: 116912. [30] TEKIN A, KALPAR M, TEKIN E.Exploring the potential of Sn-Ge based hybrid organic-inorganic perovskites: A density functional theory based computational screening study.The Journal of Chemical Physics, 2024, 161(7): 074703. [31] JI Y, LIN P, REN X, et al. Geometric and electronic structures of Cs2BB′X6 double perovskites: The importance of exact exchange. Physical Review Research, 2024, 6(3): 033172. [32] LI X, DU X, ZHANG P, et al. Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection. Science China Materials, 2021, 64(6): 1427. [33] MENG X, JIANG J, YANG X, et al. Organic-inorganic hybrid cuprous-based metal halides with unique two-dimensional crystal structure for white light-emitting diodes. Angewandte Chemie International Edition, 2024, 63(43): e202411047. [34] FANG M H.Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes.Chemical Reviews, 2022, 122(13): 11474. [35] MAI H, WEN X, LI X, et al. Data driven high quantum yield halide perovskite phosphors design and fabrication. Materials Today, 2024, 74: 12. [36] KUMAR U, KIM H W, SINGH S, et al. Designing Pr-based advanced photoluminescent materials using machine learning and density functional theory. Journal of Materials Science, 2024, 59: 1433. [37] XIONG Z, WANG Z, JIANG[J], et al. Exploration of double perovskite luminescent materials accelerated by explainable machine learning. Physical Review Applied, 2025, 24: 014050. [38] HAN P, ZHOU W, ZHENG D, et al. Lead-free all-inorganic indium chloride perovskite variant nanocrystals for efficient luminescence. Advanced Optical Materials, 2022, 10(1): 2101344. [39] LI H, ZHANG W, BIAN Y, et al. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Letters, 2022, 22(10): 4067. [40] GAO M, YANG H, SHEN H, et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Letters, 2021, 21(17): 7252. [41] WU Z, LIU P, ZHANG W, et al. Development of InP quantum dot-based light-emitting diodes. ACS Energy Letters, 2020, 5(4): 1095. [42] WU Q, CAO F, YU W, et al. Homogeneous ZnSeTeS quantum dots for efficient and stable pure-blue LEDs. Nature, 2025, 639(8055): 633. [43] JIANG C, TOZAWA M, AKIYOSHI K, et al. Development of Cu-In-Ga-S quantum dots with a narrow emission peak for red electroluminescence. The Journal of Chemical Physics, 2023, 158(16): 164708. [44] KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode. Nature, 2020, 586(7829): 385. [45] WANG S, WANG C, WANG Y, et al. Local lattice softening in semiconductor quantum dots for efficient white light-emitting diodes. Nature Photonics, 2025, 19(9): 952. [46] HUANG Y, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light: Science & Applications, 2020, 9(1): 105. [47] LIN J Y, JIANG H X.Development of microLED.Applied Physics Letters, 2020, 116(10): 100502. [48] HSIANG E L, YANG Z, YANG Q, et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays. Journal of the Society for Information Display, 2021, 29(6): 446. [49] TANG X, WENG S, HAO W, et al. Aqueous synthesis of ultrastable dual-color-emitting lead-free double-perovskite Cs2SnI6 with a wide emission span enabled by the size effect. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 9121. [50] JIA H, SHI H, YU R, et al. Biuret induced tin-anchoring and crystallization-regulating for efficient lead-free tin halide perovskite light-emitting diodes. Small, 2022, 18(17): 2200036. [51] LIN H, TALEBI S, MACSWAIN W, et al. Tailoring substitutional sites for efficient lanthanide doping in lead-free perovskite nanocrystals with enhanced near-infrared photoluminescence. ACS Nano, 2025, 19(15): 14941. [52] LENG M, YANG Y, ZENG K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446. [53] ZENG X, YIN Q, PAN L, et al. Hole delayed-release effect of inorganic interfacial dipole layer on charge balance for boosting CsCu2I3 light-emitting diodes. ACS Nano, 2025, 19(12): 11878. [54] YUAN X R, ZHANG X S, ZHAO X Y, et al. Achieving high quantum efficiency in Cs3Cu2I5 nanocrystals by the A-site ion substitution for flexible blue electroluminescence devices and enhanced photovoltaic cells. ACS Applied Nano Materials, 2024, 7(19): 23214. [55] LIU S, LIU H, ZHOU G, et al. Water-induced crystal phase transformation of stable lead-free Cu-based perovskite nanocrystals prepared by one-pot method. Chemical Engineering Journal, 2022, 427: 131430. [56] GAO F, ZHU X, FENG Q, et al. Deep-blue emissive Cs3Cu2I5 perovskites nanocrystals with 96.6% quantum yield via InI3-assisted synthesis for light-emitting device and fluorescent ink applications. Nano Energy, 2022, 98: 107270. [57] MA Z, JI X, WANG M, et al. Carbazole-containing polymer-assisted trap passivation and hole-injection promotion for efficient and stable CsCu2I3-based yellow LEDs. Advanced Science, 2022, 9(27): 2202408. [58] DING H, LIU Z, HU P, et al. High efficiency green-emitting LuAG:Ce ceramic phosphors for laser diode lighting. Advanced Optical Materials, 2021, 9(8): 2002141. [59] LI Y, LUO Z, LIU Y, et al. Ce:YScAG phosphor-converted transparent ceramics with high thermal saturation and weak concentration quenching for LED and LD white lighting. Ceramics International, 2023, 49(2): 2051. [60] IVAN I, LIBERATO M.Are there good alternatives to lead halide perovskite nanocrystals? Nano Letters, 2021, 21(1): 6. [61] FRANCO M D, ZHU D X, ASAITHAMBI A, et al. Near-infrared light-emitting diodes based on RoHS-compliant InAs/ZnSe colloidal quantum dots. ACS Energy Letters, 2022, 7(11): 3788. [62] JALALI H B, TRIZIO L D, MANNA L, et al. Indium arsenide quantum dots: an alternative to lead-based infrared emitting nanomaterials. Chemical Society Reviews, 2022, 51(24): 9861. [63] PAN Q Y, ZHAO Q, WEI P X, et al. Surface ligands for perovskite quantum dots. ChemSusChem, 2025, 18(4): e202401875. [64] LIU J H, YANG Z X, YE B Q, et al. A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications. Journal of Materials Chemistry C, 2019, 7(17): 4934. [65] LI Q F, WANG J T, WANG Z L.Improving the stability of perovskite nanocrystalsvia SiO2 coating and their applications. RSC Advances, 2024, 14(2): 1417. [66] WANG Q Q, ZHANG X Y, QIAN L, et al. Improving perovskite green quantum dot light-emitting diode performance by hole interface buffer layers. ACS Applied Materials & Interfaces, 2023, 15(23): 28833. [67] WANG Z T, CHEN C, LIAN K, et al. Double-matrix encapsulation of cyan perovskite nanomaterials for high-efficiency full-spectrum white light-emitting diodes. ACS Applied Nano Materials, 2024, 7(23): 27154. [68] XUAN T T, HUANG J J, LIU H, et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes. Chemistry of Materials, 2019, 31(3): 1042. [69] GUO T H, WANG H, HAN W H, et al. Designed p-type graphene quantum dots to heal interface charge transfer in Sn-Pb perovskite solar cells. Nano Energy, 2022, 98: 107298. [70] ZHANG W D, DUAN X J, TAN Y Z, et al. Giant pyramidal near-infrared InP/ZnS quantum dots with size over 15 nm for cell imaging. Laser & Photonics Reviews, 2024, 18(10): 2400367. [71] WANG J F, BA G H, MENG[J], et al. Transition layer assisted synthesis of defect free amine-phosphine based InP QDs. Nano Letters, 2024, 24(29): 8894. [72] IVANOV S A, PIRYATINSKI A, NANDA[J], et al. Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. Journal of the American Chemical Society, 2007, 129(38): 11708. [73] KICK M, ALEXANDER E, VAN V T.Band alignment in core-shell nanocrystals by estimating wave function tunneling probabilities.Nano Letters, 2025, 25(42): 15272. [74] NANDAN Y, MEHATA M S.Wavefunction engineering of type-I/type-II excitons of CdSe/CdS core-shell quantum dots.Scientific Reports, 2019, 9: 2 [75] BANIN U.Growth and properties of semiconductor core/shell nanocrystals with InAs Cores.Journal of the American Chemical Society, 2000, 122(40): 9692. [76] CHEN B, LI D Y, WANG F.InP quantum dots: synthesis and lighting applications.Small, 2020, 16(32): 2002454. [77] KIM S W, ZIMMER J P, OHNISHI S, et al. Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. Journal of the American Chemical Society, 2005, 127(30): 10526. [78] FANG M H, CHEN K C, MAJEWSKA N, et al. Hidden structural evolution and bond valence control in near-infrared phosphors for light-emitting diodes. ACS Energy Letters, 2021, 6(1): 109. [79] KIMOTO K, XIE R J, MATSUI Y, et al. Direct observation of single dopant atom in light-emitting phosphor of β-SiAlON:Eu2+. Applied Physics Letters, 2009, 94(4): 041908 [80] PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nature Materials, 2014, 13: 891. [81] PUST P, HINTZE F, HECHT C, et al. Group(III)nitrides M[Mg2Al2N4](M = Ca, Sr, Ba, Eu)and Ba[Mg2Ga2N4]—Structural Relation and Nontypical Luminescence Properties of Eu2+ Doped Samples. Chemistry of Materials, 2014, 26(21): 6113. [82] SCHMIECHEN S, SCHNEIDER H, WAGATHA P, et al. Toward new phosphors for application in illumination-grade white pc-LEDs: the nitridomagnesosilicates Ca[Mg3SiN4]:Ce3+, Sr[Mg3SiN4]:Eu2+, and Eu[Mg3SiN4]. Chemistry of Materials, 2014, 26(8): 2712. [83] KUMAR S, COCCHI C, STEENBOCK T.Surface defects and symmetry breaking impact on the photoluminescence of InP quantum dots.Nano Letters, 2025, 25(26): 10588. [84] GU J Z, TAO Y, FU T H, et al. Correlating photophysical properties with stereochemical expression of 6s2 lone pairs in two-dimensional lead halide perovskites. Angewandte Chemie International Edition, 2023, 62(30): e20230451. [85] XU N, QI X, SHEN Z, et al. Point defects in metal halide perovskites. Nature Reviews Physics, 2025, 7: 554. [86] ZOU Y, YUAN Z, BAI S, et al. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano, 2019, 5: 100028. [87] TSAI Y T, CHIANG C Y, ZHOU W, et al. Structural ordering and charge variation induced by cation substitution in(Sr,Ca)AlSiN3:Eu phosphor. Journal of the American Chemical Society, 2015, 137(28): 8936. [88] MAO A, GUO Y, ZHOU W, et al. Crystal field engineering inducing transformation from narrow band of Eu3+ to broadband of Eu2+. Inorganic Chemistry, 2024, 63(35): 16134. [89] XU L L, LIU G Y, XIANG H Y, et al. Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices. Applied Physics Reviews, 2022, 9(2): 021308. [90] BOGO N, STEIN C J.Benchmarking DFT-based excited-state methods for intermolecular charge-transfer excitations.Physical Chemistry Chemical Physics, 2024, 26(32): 21575. [91] BERTONI A I, SÁNCHEZ C G. Data-driven approach for benchmarking DFTB-approximate excited state methods.Physical Chemistry Chemical Physics, 2023, 25(5): 3789. [92] DE WERGIFOSSE M.Computing excited states of very large systems with range-separated hybrid functionals and the exact integral simplified time-dependent density functional theory(XsTD-DFT).The Journal of Physical Chemistry Letters, 2024, 15(24): 12628. [93] LEE S, PARK W, CHOI C H.Expanding horizons in quantum chemical studies: the versatile power of MRSF-TDDFT.Accounts of Chemical Research, 2025, 58(2): 208. [94] SINYAVSKIY A, MALIŠ M, LUBER S.Bridging the gap between variational and perturbational DFT-based methods for calculating excited states.Journal of Chemical Theory and Computation, 2025, 21(14): 7430. [95] CASTRO A, MARQUES M A L, Rubio A. Propagators for the time-dependent Kohn-Sham equations.The Journal of Chemical Physics, 2004, 121(8): 3425. [96] GROSS E K U, KOHN W. Time-dependent density-functional theory.Advances in Quantum Chemistry, 1990, 21: 255. [97] ZHU Y F, PENG J W, XU C,et al. Unsupervised machine learning in the analysis of nonadiabatic molecular dynamics simulation. The Journal of Physical Chemistry Letters, 2024, 15(38): 9601. [98] THOMAS D K, MARCELLA I, MAURO D,et al. CP2K: an electronic structure and molecular dynamics software package-quickstep: efficient and accurate electronic structure calculations. The Journal of Chemical Physics, 2020, 152(19): 194103. [99] JIA W.L, CAO Z Y, WANG L,et al. The analysis of a plane wave pseudopotential density functional theory code on a GPU machine. Computer Physics Communications, 2013, 184(1): 9. [100] Han P, Min J,et al. Excitonic characteristics of blue-emitting quantum dot materials in group II-VI using hybrid time-dependent density functional theory. Physical Review B, 2021, 104(4): 045404. [101] Zhang B F, ZHANG H, LIN J H,et al. A time‐dependent density functional study on optical response in all‐inorganic lead‐halide perovskite nanostructures. International Journal of Quantum Chemistry, 2020, 120(13): e26232. [102] GRIMME S, BANNWARTH C.Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation(sTDA-xTB). The Journal of Chemical Physics, 2016, 145(5): 054103. [103] FILATOV M, HUIX R M.Assessment of density functional theory based ΔSCF(self-consistent field)and linear response methods for longest wavelength excited states of extended π-conjugated molecular systems.The Journal of Chemical Physics, 2014, 141(2): 024112. [104] HEAD G M, RICO R J, OUMI M, et al. A doubles correction to electronic excited states from configuration interaction in the space of single substitutions. Chemical Physics Letters, 1994, 219(1): 21. [105] JI Z M,SONG Z G.Exciton radiative lifetime in CdSe quantum dots.Journal of Semiconductors, 2023, 44(3): 032702. [106] AKKERMAN, QUINTEN A.,et al. Fully inorganic Ruddlesden-Popper double Cl-I and triple Cl-Br-I lead halide perovskite nanocrystals. Chemistry of Materials, 2019, 31(6): 2182. [107] REGONIA P R, PELICANO C M, TANI R, et al. Predicting the band gap of ZnO quantum dots via supervised machine learning models. Optik, 2020, 207: 164469. [108] JIANG L, JIANG X, ZHANG Y, et al. Multiobjective machine learning-assisted discovery of a novel cyan-green garnet: Ce phosphors with excellent thermal stability. ACS Applied Materials & Interfaces, 2022, 14(13): 15426. [109] WANG X, WANG B, WANG H S, et al. Carbon-dot-based white-light-emitting diodes with adjustable correlated color temperature guided by machine learning. Angewandte Chemie International Edition, 2021, 60: 2. [110] SETYAWAN W, GAUME R M, LAM S, et al. High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Combinatorial Science, 2011, 13(4): 382. [111] MARCHENKO E I, FATEEV S A, PETROV A A, et al. Database of two-dimensional hybrid perovskite materials: open-access collection of crystal structures, band gaps, and atomic partial charges predicted by machine learning. Chemistry of Materials, 2020, 32(17): 7383. [112] SIVONXAY E, ATTIA L, CLARK E W S, et al. Gradient-based optimization of complex nanoparticle heterostructures enabled by deep learning on heterogeneous graphs. Nature Computational Science, 2025, https://doi.org/10.1038/s43588-025-00917-3(online). [113] DRAXL C, SCHEFFLER M.NOMAD: The FAIR concept for big data-driven materials science.MRS Bulletin, 2018, 43(9): 676. [114] KIRKLIN S, SAAL J, MEREDIG, B. et al. The open quantum materials database(OQMD): assessing the accuracy of DFT formation energies. npj Computational Materials, 2015, 1: 15010. [115] MOHD R N I B, NOVITA M, OGASAWARA K. Two-step model for predicting 4f→5d transition energies of Ce3+ in garnet-type oxides based on first-principles calculations and machine learning.Optical Materials, 2025, 159: 116653. [116] ZHUO Y, HARIYANI S, YOU S, et al. Machine learning 5d-level centroid shift of Ce3+ inorganic phosphors. Journal of Applied Physics, 2020, 128(1): 013104. [117] CHEN J, LUO J B, HU M Y, et al. Controlled synthesis of multicolor carbon dots assisted by machine learning. Advanced Functional Materials, 2022, 33(2): 2210095. [118] PARK C, LEE J W, KIM M, et al. A data-driven approach to predicting band gap, excitation, and emission energies for Eu2+-activated phosphors. Inorganic Chemistry Frontiers, 2021, 8(21): 4610. [119] BEZINGE L, MACEICZYK R M, LIGNOS I, et al. Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics. ACS Applied Materials & Interfaces, 2018, 10(22): 18869. [120] WANG X, WANG B, WANG H, et al. Carbon‐dot‐based white‐light‐emitting diodes with adjustable correlated color temperature guided by machine learning. Angewandte Chemie International Edition, 2021, 60(22): 12585. [121] KRUGLOV I A, BEREZNIKOVA L A, XIE C, et al. Graph neural network guided design of novel deep-ultraviolet optical materials with high birefringence. Science China Materials, 2024, 67(12): 3941. [122] TAN ZHENG, LI YAN, WU XIN, et al. De novo creation of fluorescent molecules via adversarial generative modeling. RSC Advances, 2023, 13(2): 1031. [123] XIE A L, ZHANG Z Q, GUAN J H, et al. Self-supervised learning with chemistry-aware fragmentation for effective molecular property prediction. Briefings in Bioinformatics, 2023, 24(5): bbad296. [124] MOORE G J, BARDAGOT O, BANERJI N.Deep transfer learning: a fast and accurate tool to predict the energy levels of donor molecules for organic photovoltaics.Advanced Theory and Simulations, 2022, 5(5): 2100511. [125] LI S, XIA Y, AMACHRAA M, et al. Data-driven discovery of full-visible-spectrum phosphor. Chemistry of Materials, 2019, 31(16): 6286. [126] XU X, LIANG H P, HUANG Q S, et al. Computational screening of promising deep-ultraviolet light emitters. Journal of the American Chemical Society, 2024, 146(18): 12864. [127] MOLOKEEV M S, SU B, ALEKSANDROVSKY A S, et al. Machine learning analysis and discovery of zero-dimensional ns2 metal halides toward enhanced photoluminescence quantum yield. Chemistry of Materials, 2022, 34(2): 537. [128] ZHUO Y, MANSOURI TEHRANI A, OLIYNYK A O, et al. Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nature Communications, 2018, 9: 4377. [129] TAKEMURA S, KOYAMA Y, NAKANISHI T, et al. Narrow-band phosphor K2ZnP2O7:Eu2+ discovered using local structure similarity. Scripta Materialia, 2022, 215: 114686. [130] TAKEMURA S, KOYAMA Y, NAKANISHI T, et al. Narrow-band emitting phosphor Na2Cs2Sr(B9O15)2:Eu2+ discovered from local structure similarity with sulfate phosphor. The Journal of Physical Chemistry Letters, 2022, 13(51): 11878. [131] WANG Y, TANG W, ZHANG C, et al. Structure‐based machine learning enables discovery of Mn4+‐activated red‐light fluorides for ultrawide‐gamut mini‐light‐emitting diodes. Advanced Functional Materials, 2023, 34(14): 2313490. [132] KOYAMA Y, IKENO H, HARADA M, et al. Rapid discovery of new Eu2+-activated phosphors with a designed luminescence color using a data-driven approach. Materials Advances, 2023, 4(1): 231. [133] DING C, LI Z, ZHANG W, et al. Machine learning the peak emission wavelength of Mn4+-activated inorganic phosphors. New Journal of Chemistry, 2023, 47(22): 10875. [134] MING H, ZHOU Y, MOLOKEEV M S, et al. Machine-learning-driven discovery of Mn4+-doped red-emitting fluorides with short excited-state lifetime and high efficiency for mini light-emitting diode displays. ACS Materials Letters, 2024, 6(5): 1790. [135] JIANG L, JIANG X, YANG M, et al. Developing and optimizing novel Cr3+-activated inorganic NIR phosphors by combining triple-objective optimization and crystal field engineering. Inorganic Chemistry Frontiers, 2024, 11(2): 487. [136] BI H, JIANG J, CHEN[J], et al. Machine learning prediction of quantum yields and wavelengths of aggregation-induced emission molecules. Materials, 2024, 17(7): 1664. [137] LIU S, SONG K, LI S, et al. Machine learning-driven discovery of efficient narrow-band green phosphor for wide-color-gamut backlight displays. Chemical Engineering Journal, 2025, 520: 165719. [138] LUO J B, CHEN J, LIU H, et al. High-efficiency synthesis of red carbon dots using machine learning. Chem Comm, 2022, 58(64): 9014. [139] HAN Y, TANG B, WANG L, et al. Machine-learning-driven synthesis of carbon dots with enhanced quantum yields. ACS Nano, 2020, 14(11): 14761. [140] MUYASSIROH D A M, PERMATASARI F A, HIRANO T, et al. Machine learning-guided synthesis of room-temperature phosphorescent carbon dots for enhanced phosphorescence lifetime and information encryption. ACS Applied Nano Materials, 2024, 7(5): 5465. [141] YUAN H L, QI L Y, PARIS M, et al. Machine learning guided design of single-phase hybrid lead halide white phosphors. Advanced Science, 2021, 8(19): 2101407. [142] ZHANG S, LV Y, LI Z, et al. Explainable machine learning-enabled discovery for high-efficiency red-emitting phosphor under data constraints. Chemical Engineering Journal, 2025, 522: 167046. |
| [1] | FAN Yuzhu, WANG Yuan, WANG Linyan, XIANG Meiling, YAN Yuting, LI Benhui, LI Min, WEN Zhidong, WANG Haichao, CHEN Yongfu, QIU Huidong, ZHAO Bo, ZHOU Chengyu. Graphene Oxide-based Adsorbents for Pb(II) Removing in Water: Progresses on Synthesis, Performance and Mechanism [J]. Journal of Inorganic Materials, 2026, 41(1): 12-26. |
| [2] | XU Jintao, GAO Pan, HE Weiyi, JIANG Shengnan, PAN Xiuhong, TANG Meibo, CHEN Kun, LIU Xuechao. Recent Progress on Preparation of 3C-SiC Single Crystal [J]. Journal of Inorganic Materials, 2026, 41(1): 1-11. |
| [3] | YU Shengyang, SU Haijun, JIANG Hao, YU Minghui, YAO Jiatong, YANG Peixin. A Review of Pore Defects in Ultra-high Temperature Oxide Ceramics by Laser Additive Manufacturing: Formation and Suppression [J]. Journal of Inorganic Materials, 2025, 40(9): 944-956. |
| [4] | LIU Jiangping, GUAN Xin, TANG Zhenjie, ZHU Wenjie, LUO Yongming. Research Progress on Catalytic Oxidation of Nitrogen-containing Volatile Organic Compounds [J]. Journal of Inorganic Materials, 2025, 40(9): 933-943. |
| [5] | XIAO Xiaolin, WANG Yuxiang, GU Peiyang, ZHU Zhenrong, SUN Yong. Advances in Regulation of Damaged Skin Regeneration by Two-dimensional Inorganic Materials [J]. Journal of Inorganic Materials, 2025, 40(8): 860-870. |
| [6] | MA Jingge, WU Chengtie. Application of Inorganic Bioceramics in Promoting Hair Follicle Regeneration and Hair Growth [J]. Journal of Inorganic Materials, 2025, 40(8): 901-910. |
| [7] | ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell Function and Innervated Tissue Regeneration: A Review [J]. Journal of Inorganic Materials, 2025, 40(8): 849-859. |
| [8] | AI Minhui, LEI Bo. Micro-nanoscale Bioactive Glass: Functionalized Design and Angiogenic Skin Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 921-932. |
| [9] | WANG Yutong, CHANG Jiang, XU He, WU Chengtie. Advances in Silicate Bioceramic/Bioglass for Wound Healing: Effects, Mechanisms and Application Ways [J]. Journal of Inorganic Materials, 2025, 40(8): 911-920. |
| [10] | MA Wenping, HAN Yahui, WU Chengtie, LÜ Hongxu. Application of Inorganic Bioactive Materials in Organoid Research [J]. Journal of Inorganic Materials, 2025, 40(8): 888-900. |
| [11] | LUO Xiaomin, QIAO Zhilong, LIU Ying, YANG Chen, CHANG Jiang. Inorganic Bioactive Materials Regulating Myocardial Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 871-887. |
| [12] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [13] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
| [14] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
| [15] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||