Journal of Inorganic Materials
HU Zhichao1, YANG Hongyu2, YANG Hongcheng3, SUN Chengli1, YANG Jun4, LI Enzhu1
Received:
2024-10-29
Revised:
2025-01-02
About author:
HU Zhichao(2000-),male,PhD Candidate. E-mail:3256341968@qq.com.
Supported by:
CLC Number:
HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240450.
[1] REANEY I M, IDDLES D.Microwave dielectric ceramics for resonators and filters in mobile phone networks. [J]. Am. Ceram. Soc., 2006, 89: 2063. [2] SEBASTIAN M T, UBIC R, JANTUNEN H.Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev., 2015, 60: 392. [3] ZHOU D, PANG L X, WANG D W, et al.BiVO4 based high k microwave dielectric materials: a review. J. Mater. Chem. C, 2018, 6: 9290. [4] JOSEPH T, SEBASTIAN M T.Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni). J. Am. Ceram. Soc., 2010, 93: 147. [5] YANG H, ZHANG S, YANG H, et al.The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. [J]. Adv. Ceram., 2021, 10: 885. [6] HUANG Z, QIAO J, LI L.Crystal structure and microwave dielectric characteristics of ixiolite ceramics with molybdenum ion modification and tri-layered structure. [J]. Alloy. Compd., 2023, 931: 167489. [7] UBIC R, REANEY I M, LEE W E.Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO2(Ln = lanthanide cation). Int. Mater. Rev., 1998, 43: 205. [8] TAKAHASHI H, BABA Y, EZAKI K, et al.Microwave dielectric properties and crystal structureof CaO-Li2O-(1-x)Sm2O3-xLn2O3-TiO2 (Ln: lanthanide) ceramics system. Jpn. J. Appl. Phys, 1996, 35: 5069. [9] CAVA R J.Dielectric materials for applications in microwave communications. J. Mater. Chem, 2001, 11: 54. [10] VANDERAH T A. Talking Ceramics. Science, 2002, 298: 1182. [11] ZHOU D, FAN X Q, JIN X W, et al.Structures, Phase Transformations, and Dielectric Properties of BiTaO4 Ceramics. Inorg. Chem., 2016, 55: 11979. [12] PHILLIPS J C.Dielectric definition of electronegativity. Phys. Rev. Lett., 1968, 20: 550. [13] VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. Phys. Rev. Lett., 1969, 182: 891. [14] VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. II. ionization potentials and interband transition energies. Phys. Rev. Lett., 1969, 187: 1007. [15] PHILLIPS J C.Ionicity of the chemical bond in crystals. Rev. Mod. Phys., 1970, 42: 317. [16] LEVINE B F.Bond susceptibilities and ionicities in complex crystal structures. [J]. Chem. Phys., 1973, 59: 1463. [17] XUE D F, ZHANG S Y.Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4 crystal. J. Phys.: Condens. Matter, 1996, 8: 1949. [18] PENN D R.Wave-number-dependent dielectric function of semiconductors. Phys. Rev., 1962, 128: 2093. [19] KUCHARCZYK W.A bond-charge calculation of the quadratic electro-optic effect in LiF. J. Phys. C: Solid State Phys., 1987, 20: 1875. [20] YANG H, ZHANG S, YANG H, et al.Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review. Inorg. Chem. Front, 2020, 7: 4711. [21] JS S, SY Z.Barycenter of Energy of Lanthanide 4fN-15d Configuration in Inorganic Crystals. J. Phys. Chem. B, 2004, 108: 18845. [22] WU Z J, MENG Q B, ZHANG S Y.Semiempirical study on the valences of Cu and bond covalency in Y1-xCaxBa2Cu3O6+y. Phys. Rev. B, 1998, 58: 958. [23] XUE D, ZHANG S.Chemical bond analysis of nonlinearity of urea crystal. J. Phys. Chem. A, 1997, 101: 5547. [24] LIU D, ZHANG S, WU Z.Lattice energy estimation for inorganic ionic crystals. Inorg. Chem., 2003, 42: 2465. [25] REDHAMMER G J, ROTH G.A comparison of the clinopyroxene compounds CaZnSi2O6 and CaZnGe2O6. Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 2005, 61: i20. [26] XIAO M, WEI Y, ZHANG P.The effect of sintering temperature on the crystal structure and microwave dielectric properties of CaCoSi2O6 ceramic. Mater. Chem. Phys, 2019, 225: 99. [27] SUN H, ZHANG Q, YANG H, et al.(Ca1-xMgx)SiO3: A low-permittivity microwave dielectric ceramic system. Mat. Sci. Eng: B, 2007, 138: 46. [28] LAI Y, SU H, WANG G, et al.Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. [J]. Alloy. Compd., 2019, 772: 40. [29] XIAO M, WEI Y, SUN H, et al.Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic. [J]. Mater. Sci. Mater. Electron., 2018, 29: 20339. [30] SUGIHARA J, KAKIMOTO K I, KAGOMIYA I, et al.Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process. [J]. Eur. Ceram. Soc., 2007, 27: 3105. [31] LIU K, ZHANG H, LIU C, et al.Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 - a novel high-entropy ceramic. Ceram. Int., 2022, 48: 23307. [32] ZHANG P, CHEN X, CHEN G, et al.Structural dependence of microwave dielectric properties of Ca3MgSi2O8 ceramics. [J]. Mater. Sci., 2022, 57: 10039. [33] SONG X, LEI W, WANG F, et al.Phase evolution, crystal structure, and microwave dielectric properties of gillespite-type ceramics. [J]. Am. Ceram. Soc., 2021, 104(4): 1740. [34] QIN J, LIU Z, MA M, et al.Structure and microwave dielectric properties of gillespite-type ACuSi4O10(A = Ca, Sr, Ba) ceramics and quantitative prediction of the Q × f value via machine learning. ACS Appl. Mater. Interfaces., 2021, 13: 17817. [35] CHENG Z, XU L, WANG X, et al.The effect of B-site ions on crystal structure evolution and microwave dielectric properties of gillespite-type SrCu0.95B0.05(B2+: Cu, Co, Mn, Ni, Mg, Zn)Si4O10. Ceram. Int., 2023, 49: 36800. [36] HUANG F, SU H, ZHANG Q, et al.The structural characteristics and microwave dielectric properties of Ti4+ doped CaMgSi2O6 ceramics. Ceram. Int., 2022, 48: 33615. [37] KORNEV I, BICHURIN M, RIVERA J P, et al.Magnetoelectric properties of LiCoPO4 and LiNiPO4. Phys. Rev. B Condens. Matter, 2000, 62: 12247. [38] BIAN J J, KIM D W, HONG K S.Glass-free LTCC microwave dielectric ceramics. Mater. Res. Bull, 2005, 40: 2120. [39] GUO T, WU W, WANG Y, et al.Relations on synthesis, crystal structure and microwave dielectric properties of SrZnP2O7 ceramics. Ceram. Int., 2012, 38: S187. [40] ZHANG P, WU S, XIAO M.The microwave dielectric properties and crystal structure of low temperature sintering LiNiPO4 ceramics. [J]. Eur. Ceram. Soc., 2018, 38: 4433. [41] TIAN H, ZHANG X, ZHANG Z, et al.Low-permittivity LiLn(PO3)4(Ln = La, Sm, Eu) dielectric ceramics for microwave/millimeter-wave communication. J. Adv. Ceram., 2024, 13: 602. [42] LI J, LIU J, ZHANG Y, et al.Exploring the Ln-O bonding nature and charge characteristics in monazite in relation to microwave dielectric properties. [J]. Am. Ceram. Soc., 2024, 107: 175. [43] FENG Z, WANG Y, KIMURA H, et al.Sintering behavior, microwave dielectric properties, and chemical bond features of novel low-loss monoclinic-structure Ni3(PO4)2 ceramic based on NiO-P2O5 binary phase diagram. Ceram. Int., 2022, 48: 30681. [44] BAO J, DU J, LIU L, et al.A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature. Ceram. Int., 2022, 48: 784. [45] CHEN X, LI H, ZHANG P, et al.A low-permittivity microwave dielectric ceramic BaZnP2O7 and its performance modification. [J]. Am. Ceram. Soc., 2021, 104(10): 5214. [46] BAO J, ZHANG Y, KIMURA H, et al.Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3, 2023, 12: 82. [47] ZHANG Y H, SUN J J, DAI N, et al.Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. J. Eur. Ceram. Soc., 2019, 39: 1127. [48] LIU W, ZUO R.Low temperature fired Ln2Zr3(MoO4)9, 2017, 43: 17229. [49] LIU W, ZUO R.A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. J. Eur. Ceram. Soc., 2018, 38: 339. [50] XING C F, WU B, BAO J, et al.Crystal structure, infrared spectra and microwave dielectric properties of a novel low-firing Gd2Zr3(MoO4)9 ceramic. Ceram. Int., 2019, 45: 22207. [51] TAO B J, XING C F, WANG W F, et al.A novel Ce2Zr3(MoO4)9 microwave dielectric ceramic with ultra-low firing temperature. Ceram. Int., 2019, 45: 24675. [52] TIAN H, ZHOU X, JIANG T, et al.Bond characteristics and microwave dielectric properties of (Mn1/3Sb2/3)4+ doped molybdate based low-temperature sintering ceramics. J. Alloy. Compd., 2022, 906: 164333. [53] BAO J, WANG Y, KIMURA H, et al.Sintering characteristics, crystal structure, and microwave dielectric properties of Ce2[Zr1-x(Al1/2Nb1/2)x]3, 2022, 925: 166566. [54] IVLEVA L I, BASIEV T T, VORONINA I S, et al.SrWO4:Nd3+ - new material for multifunctional lasers. Opt. Mater., 2003, 23: 439. [55] NAZAROV M V, TSUKERBLAT B S, POPOVICI E J, et al.Optical lines in europium-erbium double activated calcium tungstate phosphor. Phys. Lett. A, 2004, 330: 291. [56] YOON S H, KIM D W, CHO S Y, et al.Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. [J]. Eur. Ceram. Soc., 2006, 26: 2051. [57] MAČEK KRŽMANC M, LOGAR M, BUDIČ B, et al. Dielectric and microstructural study of the SrWO4, BaWO4, and CaWO4 scheelite ceramics. [J]. Am. Ceram. Soc., 2011, 94: 2464. [58] KHOBRAGADE N, SINHA E, ROUT S K, et al.Structural, optical and microwave dielectric properties of Sr1-xCaxWO4 ceramics prepared by the solid state reaction route. Ceram. Int., 2013, 39: 9627. [59] PôRTO S L, LONGO E, PIZANI P S, et al. Photoluminescence in the CaxSr1-xWO4 system at room temperature. [J]. Solid State Chem, 2008, 181: 1876. [60] LONGO V M, ORHAN E, CAVALCANTE L S, et al.Understanding the origin of photoluminescence in disordered Ca0.60Sr0.40WO4: An experimental and first-principles study. Chem. Phys., 2007, 334: 180. [61] NAJAFVANDZADEH N, VALI R.The electronic and microwave dielectric properties of Sr1-xCaxWO4 alloys by first principles calculations. Physica B, 2019, 572: 266. [62] ZHANG Q, SU H, ZHANG H, et al.Bond, vibration and microwave dielectric characteristics of Zn1-x(Li0.5Bi0.5)xWO4 ceramics with low temperature sintering. [J]. Materiomics, 2022, 8: 392. [63] ZHANG Q, XU L, TANG X, et al.Electronic structure, Raman spectra, and microwave dielectric properties of Co-substituted ZnWO4 ceramics. [J]. Alloy. Compd., 2021, 874: 159928. [64] YIN C, LI C, YANG G, et al.NaCa4V5O17: a low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. [J]. Eur. Ceram. Soc., 2020, 40: 386. [65] XIANG H, LI C, TANG Y, et al.Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6(M=Mo, W) and their chemical compatibility with metal electrodes. J. Eur. Ceram. Soc., 2017, 37: 3959. [66] CAO H, CHEN L, LI B.A new microwave dielectric ceramic Zn2V2O7 with low sintering temperature. Mater. Lett., 2022, 326: 132924. [67] LIN M C, LING I C, HSU T H, et al.Investigation of the correlation between structure and microwave dielectric properties of ZnV2O6 ceramic using P-V-L bond theory. [J]. Eur. Ceram. Soc., 2024, 44: 5016. [68] YANG R, CHEN L, LI B.A new rare-earth orthovanadate microwave dielectric ceramic: ErVO4. Mater. Chem. Phys, 2023, 301: 127630. [69] ZHANG P, FAN X, FAN X.Effects of Cu2+ substitution on the sintering behavior, crystal structure and microwave dielectric properties of Li3Mg4NbO8 ceramics. Mater. Chem. Phys, 2024, 316: 129118. [70] XIE F, ZHOU S, GAO F, et al.Raman vibration, bond chemistry and enhanced microwave dielectric properties of Li3Mg2NbO6 ceramics under an oxygen atmosphere. Ceram. Int., 2022, 48: 32049. [71] PENG S, LI C, GAO X, et al.Crystal structures, chemical bonds, and microwave dielectric properties of ZnCu2Nb2O8 ceramics. Ceram. Int., 2024, 50: 2396. [72] HUANG Z, QIAO J, LI L.Enhanced dielectric properties and chemical bond characteristics of MgNb2O6 ceramics due to magnesium oxide doping. Ceram. Int., 2023, 49: 32946. [73] WANG G, YAN H, HU Y, et al.Microstructure evolution, crystal structure, Raman analysis, bond characteristics and enhanced microwave dielectric properties of Zn1-xCuxZrNb2O8 solid solution ceramics. Ceram. Int., 2023, 49: 35264. [74] YANG H, CHAI L, LIU Q, et al.Ionic substitution effects on the structure-property relationship of Zn0.5Ti0.5NbO4 microwave dielectric ceramics. Ceram. Int., 2022, 48: 25292. [75] WU F-F, ZHOU D, DU C, et al.Temperature stable Sm(Nb1-xVx)O4 (0.0 ≤ x ≤ 0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C, 2021, 9: 9962. [76] LIU H, WANG G, ZHANG H.Correlation between crystal structure, bond characteristics, Raman vibrations, and improved microwave dielectric properties of high-performance Zn0.5Zr0.5NbO4 ceramics: First principle calculation and experiment. Ceram. Int., 2023, 49: 30001. [77] WANG J, ZELENYUK A, IMRE D, et al.Big data management with incremental K-Means trees-GPU-accelerated construction and visualization. Informatics, 2017, 4(3): 24. [78] MA Z, ZHENG J, WANG S, et al.First-principle calculations of crystal structures, electronic structures, and optical properties of RETaO4 (RE = Y, La, Sm, Eu, Dy, Er). Opt. Eng, 2018, 57: 1. [79] HUO J, ZHONG C, LI E, et al.New temperature stable YbTaO4 microwave dielectric ceramic with monoclinic structure. Ceram. Int., 2022, 48: 34465. [80] KIM E, JEON C.Dependence of microwave dielectric properties on structural characteristics of ilmenite, tri-rutile and wolframite ceramics. [J]. Adv. Dielect., 2011, 1(1): 127. [81] YANG H, GUO Z, XIONG Z, et al.Bond theory, vibrational spectroscopy, and dielectric responses of trirutile ATa2O6(A = Mg, Ni) microwave ceramics. Ceram. Int., 2024, 50: 19171. [82] FANG Z, YANG H, YANG H, et al.Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceram. Int., 2021, 47: 21388. [83] SHI L, WANG X, PENG R, et al.Bond characteristics and microwave dielectric ceramic of rare-earth tantalite NdTaO4 ceramic. Ceram. Int., 2022, 48: 30101. [84] SHI L, WANG X, PENG R, et al.Effect of Mn2+ doping on the lattice and the microwave dielectric properties of MgTa2O6 ceramics. Ceram. Int., 2022, 48: 20096. [85] SHI L, WANG X, PENG R, et al.Crystallographic characteristics and microwave dielectric properties of Ni-modified MgTa2O6 ceramics. Ceram. Int., 2021, 47: 22514. [86] WU X, JING Y, LI Y, et al.Novel Tri-rutile Ni0.5Ti0.5TaO4 microwave dielectric ceramics: crystal structure chemistry, Raman vibration mode, and chemical bond characteristic in-depth studies. J. Phys. Chem. C, 2022, 126: 14680. [87] YANG H, ZHANG S, CHEN Y, et al.Crystal chemistry, Raman spectra, and bond characteristics of Trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics. Inorg. Chem., 2019, 58: 968. [88] LIU K, ZHANG H, LIU C, et al.Relationship between microwave dielectric properties and structure of Ca2+-substituted ZnZrTa2O8 ceramics. [J]. Alloy. Compd., 2023, 934: 167981. [89] LIN Y J, WANG S F, LAI B C, et al.Densification, microstructure evolution, and microwave dielectric properties of Mg1-xCaxZrTa2O8 ceramics. [J]. Eur. Ceram. Soc., 2017, 37: 2825. [90] WANG G, ZHANG D, LI J, et al.Structural dependence of microwave dielectric performance of wolframite structured Mg1-xCaxZrNb2O8 ceramics: Crystal structure, microstructure evolution, Raman analysis and chemical bond theory. [J]. Eur. Ceram. Soc., 2021, 41: 3445. [91] GUO Y, OHSATO H, KAKIMOTO K I.Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. [J]. Eur. Ceram. Soc., 2006, 26: 1827. [92] LEI W, LU W Z, ZHU J H, et al.Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Mater. Lett., 2007, 61: 4066. [93] KAGOMIYA I, MATSUDA Y, KAKIMOTO K, et al.Microwave dielectric properties of YAG ceramics. Ferroelectrics, 2009, 387: 1. [94] FU Z, LIU P, MA J, et al.Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6(B=Ti, Sn, Zr). J. Eur. Ceram. Soc., 2016, 36: 625. [95] YANG J, PANG J, LUO X, et al.Phase structure, bond features, and microwave dielectric characteristics of Ruddlesden-Popper Type Sr2TiO4 ceramics. Materials , 2023, 16(14):5195. [96] LI H, XIANG R, CHEN X, et al.Intrinsic dielectric behavior of Mg2TiO4 spinel ceramic. Ceram. Int., 2020, 46: 4235. [97] KIM H T, BYUN J D, KIM Y.Microstructure and microwave dielectric properties of modified Zinc Titanates (II). Mater. Res. Bull, 1998, 33: 975. [98] WANG Y, LI J, FANG W, et al.A novel ultra-high Q microwave dielectric ceramic ZnMgTiO4 with spinel structure. Ceram. Int., 2023, 49: 35420. [99] GEORGE S, SEBASTIAN M T.Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8(A=Mg, Zn) ceramics. J. Am. Ceram. Soc., 2010, 93: 2164. [100] GUO H H, FU M S, ZHOU D, et al.Design of a high-efficiency and -gain antenna using novel low-loss, temperature-stable Li2Ti1-x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Appl. Mater. Interfaces., 2021, 13: 912. [101] LIU K, SHI L, WANG X, et al.Li+ enrichment to improve the microwave dielectric properties of Li2ZnTi3O8 ceramics and the relationship between structure and properties. [J]. Eur. Ceram. Soc., 2023, 43: 1483. [102] JOVIC N, ANTIC B, KREMENOVIC A, et al.Cation ordering and order-disorder phase transition in co-substituted Li4Ti5O12 spinels. Phys. Status Solidi A-Appl. Res, 2003, 198: 18. [103] TANG Y, SHEN S, LI J, et al.Characterization of structure and chemical bond in high-Q microwave dielectric ceramics LiM2GaTi2O8(M = Mg, Zn). J. Eur. Ceram. Soc., 2022, 42: 4573. [104] QING Z, LIU A, DUAN S, et al.Structure, chemical bonding characteristics and microwave dielectric properties of Li5Mg3Ti2O9F ceramic with low sintering temperature. Ceram. Int., 2024, 50: 15195. [105] LOWNDES R, AZOUGH F, CERNIK R, et al.Structures and microwave dielectric properties of Ca(1-x)Nd2x/3TiO3 ceramics. J. Eur. Ceram. Soc., 2012, 32: 3791. [106] YOSHIDA M, HARA N, TAKAHIRO TAKADA T T, et al. Structure and Dielectric Properties of (Ca1-xNd2x/3)TiO3. Jpn. J. Appl. Phys, 1997, 36: 6818. [107] XIONG Z, TANG B, LUO F, et al.Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium. [J]. Alloy. Compd., 2020, 835: 155249. [108] YANG H, ZHANG S, YANG H, et al.Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4-(1-x)Zn0.15Nb0.3Ti0.55O2 Ceramics. Inorg. Chem., 2018, 57: 8264. [109] HU Z, LI E, YANG H, et al.Ionic substitution effects on the crystal structure and microwave dielectric properties of rutile Zn0.15Nb0.3Ti0.55O2 ceramics. [J]. Mater. Sci. Mater. Electron., 2023, 35: 15. [110] LIU Y, CHENG Z, GAN L, et al.Microwave dielectric properties and sintering behavior of a novel low-cost lightweight, middle-εr Na2Ti6O13 ceramics. Ceram. Int., 2024, 50: 2103. |
[1] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[2] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[3] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[4] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
[5] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[6] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[7] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[8] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[9] | HUANG Jianfeng, LIANG Ruihong, ZHOU Zhiyong. Effects of W/Cr Co-doping on the Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2024, 39(8): 887-894. |
[10] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[13] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[14] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[15] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||