Journal of Inorganic Materials
• Original article • Next Articles
SHI Jinyu1,2(), LEI Yiming1, WANG Chenxu3, ZHANG Jie1(
), WANG Jingyang1
Received:
2025-05-26
Revised:
2025-07-14
Contact:
ZHANG Jie, professor. E-mail: jiezhang@imr.ac.cn
About author:
SHI Jinyu (1996-), male, PhD candidate. E-mail: jyshi19s@imr.ac.cn
Supported by:
CLC Number:
SHI Jinyu, LEI Yiming, WANG Chenxu, ZHANG Jie, WANG Jingyang. Ion Irradiation Damage Behavior in Titanium Carbide with Different Stoichiometry[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250228.
[1] | DONG D, GUAN J, WANG Z, et al. Current status and trends of nuclear energy under carbon neutrality conditions in China. Energy, 2025, 314: 134253. |
[2] | OUYANG Q, WANG Y F, XU J, et al. Research progress of SiC fiber reinforced SiC composites for nuclear application. Journal of Inorganic Materials, 2022, 37(8): 822. |
[3] | ZINKLE S J, SNEAD L L. Designing radiation resistance in materials for fusion energy. Annual Review of Materials Research, 2014, 44(1): 241. |
[4] | ZINKLE S J, BUSBY J T. Structural materials for fission & fusion energy. Materials Today, 2009, 12(11): 12. |
[5] | 杜进隆, 徐川, 付恩刚. 基于界面和纳米析出相材料的抗辐照损伤机制研究进展. 科学通报, 2023, 68(09): 1125. |
[6] | HAN W Z, DEMKOWICZ M J, FU E G, et al. Effect of grain boundary character on sink efficiency. Acta Materialia, 2012, 60(18): 6341. |
[7] | HAN W, DEMKOWICZ M J, MARA N A, et al. Design of radiation tolerant materials via interface engineering. Advanced Materials, 2013, 25(48): 6975. |
[8] | YU K Y, BUFFORD D, KHATKHATAY F, et al. In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag. Scripta Materialia, 2013, 69(5): 385. |
[9] | DU J, JIANG S, CAO P, et al. Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices. Nature Materials, 2023, 22(4): 442. |
[10] | XUE J X, ZHANG G J, GUO L P, et al. Improved radiation damage tolerance of titanium nitride ceramics by introduction of vacancy defects. Journal of the European Ceramic Society, 2014, 34(3): 633. |
[11] | 魏博鑫.高抗辐照损伤容限ZrCx陶瓷的制备与环境损伤行为. 哈尔滨: 哈尔滨工业大学博士论文, 2018. |
[12] | 陈丽娜.先进核能系统用碳化锆陶瓷涂层的制备与性能研究. 合肥: 中国科学技术大学博士论文, 2024. |
[13] | SHI J, CHEN L, LEI Y, et al. Irradiation damage of zirconium car-bide with different stoichiometry. Vacuum, 2025, 239: 114355. |
[14] | AGARWAL S, KOYANAGI T, BHATTACHARYA A, et al. Neutron irradiation-induced microstructure damage in ultra-high temperature ceramic TiC. Acta Materialia, 2020, 186: 1. |
[15] | NOSEK A, CONZEN J, DOESCHER H, et al. Thermomechanics of candidate coatings for advanced gas reactor fuels. Journal of Nuclear Materials, 2007, 371(1-3): 288. |
[16] | TANG C, STUEBER M, SEIFERT H J, et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings. Corrosion Reviews, 2017, 35(3): 141. |
[17] | AGARWAL S, TROCELLIER P, VAUBAILLON S, et al. Diffusion and retention of helium in titanium carbide. Journal of Nuclear Materials, 2014, 448(1-3): 144. |
[18] | WEINBERGER C R, THOMPSON G B. Review of phase stabil-ity in the group IVB and VB transition-metal carbides. Journal of the American Ceramic Society, 2018, 101(10): 4401. |
[19] | LIPATNIKOV V N, KOTTAR A, ZUEVA L V, et al. Ordering effects in nonstoichiometric titanium carbide. Inorganic Materials, 2000, 36(2): 155. |
[20] | GAVARINI S, MILLARD-PINARD N, GARNIER V, et al. Elabora-tion and behavior under extreme irradiation conditions of nano- and micro-structured TiC. Nuclear Instruments and Meth-ods in Physics Research Section B: Beam Interactions with Ma-terials and Atoms, 2015, 356-357: 114. |
[21] | PELLEGRINO S, TROCELLIER P, THOMÉ L, et al. Raman investigation of ion irradiated TiC and ZrC. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 454: 61. |
[22] | SHI J, LEI Y, WANG C, et al. Microstructure evolution in titanium carbide with different stoichiometry under 3 MeV Au2+ ion irradiation. Journal of Nuclear Materials, 2025, 606: 155609. |
[23] | 徐川, 付恩刚. 北京大学1.7 MV串列静电加速器的离子注入/辐照实验系统. 原子核物理评论, 2021, 38 (04): 410. |
[24] | WEBER W J, ZHANG Y. Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: challenges and recommendations. Current Opinion in Solid State and Materials Science, 2019, 23(4): 100757. |
[25] | JIANG M, XIAO H Y, ZHANG H B, et al. A comparative study of low energy radiation responses of SiC, TiC and ZrC. Acta Materialia, 2016, 110: 192. |
[26] | HANSON W A, PATEL M K, CRESPILLO M L, et al. Ionizing vs collisional radiation damage in materials: separated, competing, and synergistic effects in Ti3SiC2. Acta Materialia, 2019, 173: 195. |
[27] | KITAJIMA M. Defects in crystals studied by raman scattering. Critical Reviews in Solid State and Materials Sciences, 1997, 22(4): 275. |
[28] | LI Q, WEI Y, DING X, et al. Enhanced resistance to He ions irradi-ation damage of nanocrystalline SiC coating. Journal of Advanced Ceramics, 2025, 14: 9221067. |
[29] | CHEN C C., LIANG N T, TSE W S, et al. Raman spectra of titanium nitride thin films. Chinese Journal of Physics, 1994, 32: 205. |
[30] | KLEIN M V, HOLY J A, WILLIAMS W S. Raman scattering induced by carbon vacancies in TiCx. Physical Review B, 1978, 17(4): 1546. |
[31] | WARD Y, YOUNG R J, SHATWELL R A. Application of raman microscopy to the analysis of silicon carbide monofilaments. Journal of Materials Science, 2004, 39(22): 6781. |
[32] | WIPF H, KLEIN M V, WILLIAMS W S. Vacancy-induced and two-phonon raman scattering in ZrCx, NbCx, HfCx, and TaCx. Physica Status Solidi (b)-Basic Solid State Physics, 1981, 108(2): 489. |
[33] | LANG E, BEECHEM T, MCDONALD A, et al. Defect structures as a function of ion irradiation and annealing in LiNbO3. Thin Solid Films, 2023, 768: 139719. |
[34] | HU J, LI H, LI J, et al. Super-hard and tough Ta1-xWxCy films deposited by magnetron sputtering. Surface and Coatings Technology, 2020, 400: 126207. |
[35] | LI H, ZHANG L, ZENG Q, et al. Structural, elastic and electronic properties of transition metal carbides TMC (TM=Ti, Zr, Hf and Ta) from first-principles calculations. Solid State Communications, 2011, 151(8): 602. |
[36] | WANG R, LI B, LI P, et al. Effect of low-dose Xe20+ ion irradiation on the deformation behavior of the magnetron sputtered Cr coatings under nanoindentation. Surface and Coatings Technology, 2021, 428: 127907. |
[37] | ZHANG Y, LI B, REN Y, et al. Evolution of structural and magnetic properties of NiFe/NiO exchange biased bilayer with medium energy C+ ion irradiation. Journal of Alloys and Compounds, 2025, 1018: 179180. |
[38] | YANG J, LU S, YANG J. Irradiation response of microstructure and mechanical properties of NbMoVCr multi-principal element alloy coatings. Surface and Coatings Technology, 2024, 492: 131209. |
[39] | ZHANG W, DENG J, ZHONG Y, et al. Microstructure response and LBE corrosion behavior of the FeCrAlY coating after Au-ions irradiation. Corrosion Science, 2024, 241: 112521. |
[40] | ZHONG Y, ZHANG W, YANG J, et al. Study on LBE corrosion failure of FeAl/Al2O3 coatings after ion irradiation. Materials & Design, 2024, 242: 113019. |
[41] | FU T, ZHU Y, PAN H, et al. Irradiation softening in a uranium containing NbTiZrU high entropy alloy induced by Xe ion implantation. Materials Today Communications, 2025, 42: 111231. |
[42] | MONNET G. Multiscale modeling of irradiation hardening: application to important nuclear materials. Journal of Nuclear Materials, 2018, 508: 609. |
[43] | HUANG Q, LEI G, LIU R, et al.Microstructure, hardness and modulus of carbon-ion-irradiated new SiC fiber (601-4). Journal of Nuclear Materials, 2018, 503: 91. |
[44] | PELLEGRINO S, CROCOMBETTE J P, DEBELLE A, et al. Multi-scale simulation of the experimental response of ion-irradiated zirconium carbide: Role of interstitial clustering. Acta Materialia, 2016, 102: 79. |
[1] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[2] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[3] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[4] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[5] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[6] | LI Wei, XU Zhiming, GOU Yanzi, YIN Senhu, YU Yiping, WANG Song. Preparation and Performance of Sintered SiC Fiber-bonded Ceramics [J]. Journal of Inorganic Materials, 2025, 40(2): 177-183. |
[7] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[8] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[9] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[10] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[11] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[12] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[13] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[14] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[15] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||