Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (6): 575-586.DOI: 10.15541/jim20240533
• REVIEW • Previous Articles Next Articles
WU Jie1,2(
), YANG Shuai1, WANG Mingwen1, LI Jinglei1, LI Chunchun1, LI Fei1(
)
Received:2024-12-23
Revised:2025-02-05
Published:2025-06-20
Online:2025-02-19
Contact:
LI Fei, professor. E-mail: ful5@xjtu.edu.cnAbout author:WU Jie (1989-), male, associate professor. E-mail: hitwujie@163.com
Supported by:CLC Number:
WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge[J]. Journal of Inorganic Materials, 2025, 40(6): 575-586.
| Composition | Relative permittivity, εr | d33/(pC·N-1) | Curie temperature, TC/℃ | Ref. |
|---|---|---|---|---|
| PMN-PZT | / | 878 (d33*) | 220 | [ |
| PMN-PZT | 2310 | 1100 | 204 | [ |
| PIN-PMN-PT | / | 780 | 225 | [ |
| PIN-PMN-PT | 2415 | 841 | 210 | [ |
| PYN-PMN-PT | 2110 | 1340 (d33*) | 214 | [ |
| PZT-PZNN | 2300 | 920 (d33*) | 256 | [ |
Table 1 Performance parameters of textured ternary PT-based ceramics[60,70 -71,73 -74,76]
| Composition | Relative permittivity, εr | d33/(pC·N-1) | Curie temperature, TC/℃ | Ref. |
|---|---|---|---|---|
| PMN-PZT | / | 878 (d33*) | 220 | [ |
| PMN-PZT | 2310 | 1100 | 204 | [ |
| PIN-PMN-PT | / | 780 | 225 | [ |
| PIN-PMN-PT | 2415 | 841 | 210 | [ |
| PYN-PMN-PT | 2110 | 1340 (d33*) | 214 | [ |
| PZT-PZNN | 2300 | 920 (d33*) | 256 | [ |
Fig. 15 Schematic illustration and experimental realization of PZT texturing process[91] (a) Schematic illustration of the proposed texturing process with the color of PZT matrix indicating composition; (b, c) Cross-sectional SEM images for samples with average Zr : Ti ratio of 55 : 45 sintered at different temperatures, where (b) is an enlarged image of the layer with 3% (in volume) BZT templates in (c); (d) SEM-EDS images of Zr element, where the sample is the same as that in (c)
| [1] | LI X, WANG Z, HE C, et al. Growth and piezo-/ferroelectric properties of PIN-PMN-PT single crystals. Journal of Applied Physics, 2012, 111: 034105. |
| [2] | CHANG Y, STEPHEN F P, YANG Z, et al. (001) textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature rang. Applied Physics Letters, 2009, 95: 232905. |
| [3] | DAUMONT C, REN W, INFANTE I C. Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films. Journal of Physics: Condensed Matter, 2012, 24(16): 162202. |
| [4] | ZHANG Q, BHARTU V, ZHAO X. Giant electrostriction and relaxor ferroelectric bahavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, 1998, 280(2372): 2101. |
| [5] | ZHOU M, SUN M, LI M M. Fabrication and properties of 1-3-2 multi-element piezoelectric composite. Journal of Electroceramics, 2012, 28(2/3): 139. |
| [6] | LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science, 2019, 364(6437): 264. |
| [7] |
LEE S T F, LAM K H, ZHANG X M. High-frequency ultrasonic transducer based on lead-free BSZT piezoceramics. Ultrasonics, 2011, 51(7): 811.
DOI PMID |
| [8] | DA SILVA B R C, WERNECK M M. Optical high-voltage sensor based on fiber Bragg grating and PZT piezoelectric ceramics. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 2118. |
| [9] | ZHENG Y Y, JIANG X P, JIANG F L. The properties of Mn-doped (Na(1-x)Kx)0.5Bi0.5TiO3 lead-free ceramics and their application as filters. Rare Metal Materials and Engineering, 2008, 37(1): 759. |
| [10] | GENG H F, ZENG K, WANG B Q, et al. Giant electric field- induced strain in lead-free piezoceramics. Science, 2022, 378(6624): 1125. |
| [11] | SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432: 84. |
| [12] | WEI H G, WANG H, XIA Y J, et al. An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 2018, 6: 12446. |
| [13] | RODEL J, JO W, SEIFER K, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153. |
| [14] | LI P, ZHAI J W, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Advanced Materials. 2018, 30: 1705171. |
| [15] | LIU Y C, CHANG Y F, LI F, et al. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba, Ca)(Ti, Zr)O3 through integrating crystallographic texture and domain engineering. ACS Applied Materials & Interfaces, 2017, 9: 29863. |
| [16] | PARK S E, SHROUT T R. Relaxor based ferroelectric single crystals for electro-mechanical actuators. Materials Research Innovations, 1997, 1(1): 20. |
| [17] | ZHANG S J, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. Journal of Applied Physics, 2012, 111(3): 031301. |
| [18] | SUN E W, CAO W W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Progress in Materials Science, 2014, 65: 124. |
| [19] | LUO N N, LI Y Y, XIA Z G, et al. Progress in lead-based ferroelectric and antiferroelectric single crystals: composition modification, crystal growth and properties. CrystEngComm, 2012, 14: 4547. |
| [20] | MESSING G, TROLIER-MCKINSTRY S, SABOLSKY E M, et al. Templated grain growth of textured piezoelectric ceramics. Critical Reviews in Solid State and Materials Sciences, 2004, 29: 45. |
| [21] | MESSING G, POTERALA S, CHANG Y F, et al. Texture-engineered ceramics—property enhancements through crystallographic tailoring. Journal of Materials Research, 2017, 32: 3219. |
| [22] | MORIANA A, ZHANG S J. Lead-free textured piezoceramics using tape casting: a review. Journal of Materiomics, 2018, 4: 277. |
| [23] | WU J, ZHANG S J, LI F. Prospect of texture engineered ferroelectric ceramics. Applied Physics Letters, 2022, 121: 120501. |
| [24] | 杨帅, 王明文, 吴杰, 等. 铅基织构压电陶瓷研究进展. 硅酸盐学报, 2022, 50(3): 598. |
| [25] | ZHANG Z, DUAN X M, QIU B F, et al. Preparation and anisotropic properties of textured structural ceramics: a review. Journal of Advanced Ceramics, 2019, 8: 289. |
| [26] | LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. Journal of Inorganic and Nuclear Chemistry, 1959, 9: 113. |
| [27] | DOLLASE W A. Correction of intensities for preferred orientation in powder diffractometry—application of the March model. Journal of Applied Crystallography, 1986, 19: 267. |
| [28] | GOYAL A, FEENSTRA R, LIST F A, et al. Using RABiTS to fabricate high-temperature superconducting wire. JOM, 1999, 51: 19. |
| [29] | JIN S, SHERWOOD R C, DOVER R B, et al. High TC superconductors-composite wire fabrication. Applied Physics Letters, 1987, 51: 203. |
| [30] | SAKKA Y, SUZUKI T S. Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field. Journal of the Ceramic Society of Japan, 2005, 113: 26. |
| [31] | 吴杰. PbTiO3基三元弛豫铁电陶瓷的晶向织构和电学性能研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2019. |
| [32] | SABOLSKY E M, MESSING G, TROLIER-MCKINSTRY S. Kinetics of templated grain growth of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3. Journal of the American Ceramic Society, 2001, 84(11): 2507. |
| [33] | YAN Y K, CHO K, PRIYA S. Templated grain growth of <001>-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 piezoelectric ceramics for magnetic field sensors. Journal of the American Ceramic Society, 2011, 94(6): 1784. |
| [34] | HUANG Q W, XU J, ZHU L H, et al. Molten salt synthesis of acicular Ba2NaNb5O15 seed crystals. Journal of the American Ceramic Society, 2005, 88(2): 447. |
| [35] | KAN Y M, JIN X H, WANG P L, et al. Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes. Materials Research Bulletin, 2003, 38: 567. |
| [36] | SCHAAK R E, MALLOUK T E. Perovskites by design: a toolbox of solid-state reactions. Chemical Materials, 2002, 14: 1455. |
| [37] | SCHAAK R E, MALLOUK T E. Topochemical synthesis of three-dimensional perovskites from lamellar precursors. Journal of the American Ceramic Society, 2000, 122: 2798. |
| [38] | WATARI K, BRAHMAROUTU B, MESSING G, et al. Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3. Journal of Materials Research, 2000, 15: 846. |
| [39] | LIU Y F, LU Y N, XU M, et al. Topochemical reaction of SrTiO3 platelet crystals based on Sr3Ti2O7 platelet precursor in molten salt synthesis process. Materials Chemistry and Physics, 2009, 114: 37. |
| [40] | LIU H X, SUN X Q, ZHAO Q L, et al. The syntheses and microstructures of tabular SrTiO3 crystal. Solid-State Electronics, 2003, 47: 2295. |
| [41] | SAITO Y, TAKAO H. Synthesizing of platelike {100} SrTiO3 particle by topochemical microcrystal conversion method. Japanese Journal of Applied Physics, 2006, 45: 7377. |
| [42] | CHANG Y F, NING H P, WU J, et al. Formation mechanism of (001) oriented perovskite SrTiO3 microplatelets synthesized by topochemical microcrystal conversion. Inorganic Chemistry, 2014, 53: 11060. |
| [43] | WU J, CHANG Y F, LV W M, et al. Topochemical transformation of single crystalline SrTiO3 microplatelets from Bi4Ti3O12 precursors and their orientation-dependent surface piezoelectricity. CrystEngComm, 2018, 20: 3084. |
| [44] | LIU D, YAN Y K, ZHOU H P. Synthesis of micron-scale platelet BaTiO3. Journal of the American Ceramic Society, 2007, 90(4): 1323. |
| [45] | KRZMANC M M, JANCAR B, URSIC H, et al. Tailoring the shape, size, crystal structure, and preferential growth orientation of BaTiO3 plates synthesized through a topochemical conversion process. Crystal Growth & Design, 2017, 17: 3210. |
| [46] | FENG Q, HIRASAWA M, YANAGISAWA K. Synthesis of crystal- axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process. Chemistry Materials, 2001, 13: 290. |
| [47] | FENG Q, ISHIKAWA Y, MAKITA Y, et al. Solvothermal soft chemical synthesis and characterization of plate-like particles constructed from oriented BaTiO3 nanocrystals. Journal of the Ceramic Society of Japan, 2010, 118(2): 141. |
| [48] | LV D Y, ZUO R Z, SU S. Processing and morphology of (111) BaTiO3 crystal platelets by a two-step molten salt method. Journal of the American Ceramic Society, 2012, 95(6): 1838. |
| [49] | FU J, HOU Y D, ZHENG M P, et al. Topochemical conversion of (111) BaTiO3 piezoelectric microplatelets using Ba6Ti17O40 as the precursor. Crystal Growth & Design, 2019, 19: 1198. |
| [50] | POTERALA S F, MEYER R J, MESSING G L. Synthesis of high aspect ratio PbBi4Ti4O15 and topochemical conversion to PbTiO3-based microplatelets. Journal of the American Ceramic Society, 2011, 94(8): 2323. |
| [51] | LI L L, WANG J, GUO Q L, et al. Fabrication and topchemical transformation mechanism of PbTiO3 microplatelets. Ceramics International, 2023, 49: 7970. |
| [52] | NA Y, KWON J, NAHM S, et al. Morphological evolution of PbTiO3 microstructures synthesized by topochemical microcrystal conversion. Journal of the American Ceramic Society, 2022, 105: 47512. |
| [53] | FU J, HOU Y, ZHENG M, et al. Topochemical build-up of BaTiO3 nanorods using BaTi2O5 as the template. CrystEngComm, 2017, 19: 1115. |
| [54] | HUANG K, HUANG T, HSIEH W. Morphology-controlled synthesis of barium titanate nanostructures. Inorganic Chemistry, 2009, 48: 9180. |
| [55] | HAYASHI Y, KIMURA T, TAKASHI Y. Preparation of rod-shaped BaTiO3 powder. Journal of Materials Science, 1986, 21: 757. |
| [56] | CHENG L, LI J. A review on one dimensional perovskite nanocrystals for piezoelectric applications. Journal of Materiomics, 2016, 2: 25. |
| [57] | DENG Y, WANG J, ZHU K, et al. Synthesis and characterization of single-crystal PbTiO3 nanorods. Material Letters, 2005, 59: 3272. |
| [58] | DENG H, QIU Y, YANG S. General surfactant-free synthesis of MTiO3 (M=Ba, Sr, Pb) perovskite nanostrips. Journal of Materials Chemistry, 2009, 19: 976. |
| [59] | SABOLSKY E M, TROLIER-MCKINSTRY S, MESSING G. Dielectric and piezoelectric properties of <001> fiber-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics. Journal of Applied Physics, 2003, 93(7): 4072. |
| [60] | RICHTER T, DENNELER S, SCHUH C, et al. Textured PMN-PT and PMN-PZT. Journal of the American Ceramic Society, 2008, 91(3): 929. |
| [61] | KWON S, SABOLSKY E M, MESSING G, et al. High strain, <001> textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics: templated grain growth and piezoelectric properties. Journal of the American Ceramic Society, 2005, 88(2): 312. |
| [62] | BROSNAN K H, POTERALA S F, MEYER R J, et al. Templated grain growth of <001> textured PMN-28PT using SrTiO3 templates. Journal of the American Ceramic Society, 2009, 92(S1): S133. |
| [63] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Processing, texture quality, and piezoelectric properties of <001>C textured (1-x)Pb(Mg1/3Nb2/3)TiO3-xPbTiO3 ceramics. Journal of Applied Physics, 2011, 110: 014105. |
| [64] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Fabrication and properties of radially <001>C textured PMN-PT cylinders for transducer applications. Journal of Applied Physics, 2012, 112: 014105. |
| [65] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN-PT ceramics. Journal of Materials Research, 2013, 28(21): 2960. |
| [66] | AMORIN H, URSIC H, RAMOS P, et al. Pb(Mg1/3Nb2/3)O3-PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach. Journal of the American Ceramic Society, 2014, 97(2): 420. |
| [67] | THI M P, MARCH G, COLOMBAN P. Phase diagram and Raman imaging of grain growth mechanisms in highly textured Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics. Journal of the European Ceramic Society, 2005, 25: 3335. |
| [68] | YAN Y K, ZHOU Y, PRIYA S. Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O3-PbTiO3 <001>C radially textured cylinders. Applied Physics Letters, 2010, 104: 012910. |
| [69] | YAN Y K, WANG Y U, PRIYA S. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Applied Physics Letters, 2012, 100: 192905. |
| [70] | YAN Y K, CHO K, MAURYA D, et al. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics. Applied Physics Letters, 2013, 102: 042903. |
| [71] | CHANG Y F, SUN Y, WU J, et al. Formation mechanism of highly [001]C textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity. Journal of the European Ceramic Society, 2016, 36: 1973. |
| [72] | CHANG Y F, WATSON B, FANTON M, et al. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics. Applied Physics Letters, 2017, 111: 232901. |
| [73] | WEI D D, YUAN Q B, ZHANG G Q, et al. Templated grain growth and piezoelectric properties of <001>-textured PIN-PMN-PT ceramics. Journal of Materials Research, 2015, 30(14): 2144. |
| [74] | DURAN C, DURSUN S, AKÇA E. High strain, <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 piezoelectric ceramics. Scripta Materialia, 2016, 113: 14. |
| [75] | DURAN C, CENGIZ S, ECEBAŞ N. Processing and characterization of <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 ceramics. Journal of Materials Research, 2017, 32(13): 2471. |
| [76] | LEE T, LEE H, PARK S, et al. Structural and piezoelectric properties of <001> textured PZT-PZNN piezoelectric ceramics. Journal of the American Ceramic Society, 2017, 100: 5681. |
| [77] | ZHOU J E, YAN Y K, PRIYA S, et al. Computational study of textured ferroelectric polycrystals: dielectric and piezoelectric properties of template-matrix composites. Journal of Applied Physics, 2017, 121: 024101. |
| [78] | MING C, YANG T N, LUAN K, et al. Microstructural effects on effective piezoelectric responses of textured PMN-PT ceramics. Acta Materialia, 2018, 145: 62. |
| [79] | SEABAUGH M M, SUVACI E, BRAHMAROUTU B, et al. Modeling anisotropic single crystal growth kinetics in liquid phase sintered α-Al2O3. Interface Science, 2000, 8: 257. |
| [80] | YANG S, WANG M W, WANG L, et al. Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics. Journal of the American Ceramic Society, 2022, 105: 3322. |
| [81] | LIU L J, YANG B, LV R, et al. Enhanced unipolar electrical fatigue resistance and related mechanism in grain-oriented Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 piezoceramics. Journal of Materials Science & Technology, 2023, 145: 40. |
| [82] | WEI D D, WANG H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3. Journal of the American Ceramic Society, 2017, 100: 1073. |
| [83] | YANG S, LI J L, LIU Y, et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nature Communications, 2021, 12: 1414. |
| [84] | JIA H R, LI Z, WU F, et al. Extremely large strain response under low driving electric fields in lead-based textured piezoelectric ceramics. Ceramics International, 2023, 49: 2806. |
| [85] | LENG H Y, YAN Y K, WANG B, et al. High performance high-power textured Mn/Cu-doped PIN-PMN-PT ceramics. Acta Materialia, 2022, 234: 118015. |
| [86] | LIU H R, YAN Y K, LENG H Y, et al. High performance high power textured piezoceramics. Applied Physics Letters, 2020, 116: 252901. |
| [87] | YAN Y K, GENG L W, ZHU L F, et al. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Advanced Science, 2022, 9: 2105715. |
| [88] | 刘琳婧. 高性能PMN-PZ-PT基织构陶瓷的构筑及在超声换能器中的应用研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2024. |
| [89] | QIU R G, GUO F F, WU J, et al. Enhanced grain orientation degree and electrical properties in PSN-PMN-PT textured ceramics under the effect of sintering aids. Journal of Materials Science & Technology, 2024, 199: 114. |
| [90] | DEVEMY S, COURTOIS C, CHAMPAGNE P, et al. Textured PZT ceramics. Powder Technology, 2009, 190(1/2): 141. |
| [91] |
LI J L, QU W B, DANIELS J, et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science, 2023, 380(6640): 87.
DOI PMID |
| [1] | YU Shengyang, SU Haijun, JIANG Hao, YU Minghui, YAO Jiatong, YANG Peixin. A Review of Pore Defects in Ultra-high Temperature Oxide Ceramics by Laser Additive Manufacturing: Formation and Suppression [J]. Journal of Inorganic Materials, 2025, 40(9): 944-956. |
| [2] | LIU Jiangping, GUAN Xin, TANG Zhenjie, ZHU Wenjie, LUO Yongming. Research Progress on Catalytic Oxidation of Nitrogen-containing Volatile Organic Compounds [J]. Journal of Inorganic Materials, 2025, 40(9): 933-943. |
| [3] | XIAO Xiaolin, WANG Yuxiang, GU Peiyang, ZHU Zhenrong, SUN Yong. Advances in Regulation of Damaged Skin Regeneration by Two-dimensional Inorganic Materials [J]. Journal of Inorganic Materials, 2025, 40(8): 860-870. |
| [4] | MA Jingge, WU Chengtie. Application of Inorganic Bioceramics in Promoting Hair Follicle Regeneration and Hair Growth [J]. Journal of Inorganic Materials, 2025, 40(8): 901-910. |
| [5] | ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell Function and Innervated Tissue Regeneration: A Review [J]. Journal of Inorganic Materials, 2025, 40(8): 849-859. |
| [6] | AI Minhui, LEI Bo. Micro-nanoscale Bioactive Glass: Functionalized Design and Angiogenic Skin Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 921-932. |
| [7] | WANG Yutong, CHANG Jiang, XU He, WU Chengtie. Advances in Silicate Bioceramic/Bioglass for Wound Healing: Effects, Mechanisms and Application Ways [J]. Journal of Inorganic Materials, 2025, 40(8): 911-920. |
| [8] | MA Wenping, HAN Yahui, WU Chengtie, LÜ Hongxu. Application of Inorganic Bioactive Materials in Organoid Research [J]. Journal of Inorganic Materials, 2025, 40(8): 888-900. |
| [9] | LUO Xiaomin, QIAO Zhilong, LIU Ying, YANG Chen, CHANG Jiang. Inorganic Bioactive Materials Regulating Myocardial Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 871-887. |
| [10] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [11] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
| [12] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
| [13] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
| [14] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
| [15] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||