Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (6): 575-586.DOI: 10.15541/jim20240533
• REVIEW • Previous Articles Next Articles
WU Jie1,2(), YANG Shuai1, WANG Mingwen1, LI Jinglei1, LI Chunchun1, LI Fei1(
)
Received:
2024-12-23
Revised:
2025-02-05
Published:
2025-06-20
Online:
2025-02-19
Contact:
LI Fei, professor. E-mail: ful5@xjtu.edu.cnAbout author:
WU Jie (1989-), male, associate professor. E-mail: hitwujie@163.com
Supported by:
CLC Number:
WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge[J]. Journal of Inorganic Materials, 2025, 40(6): 575-586.
Composition | Relative permittivity, εr | d33/(pC·N-1) | Curie temperature, TC/℃ | Ref. |
---|---|---|---|---|
PMN-PZT | / | 878 (d33*) | 220 | [ |
PMN-PZT | 2310 | 1100 | 204 | [ |
PIN-PMN-PT | / | 780 | 225 | [ |
PIN-PMN-PT | 2415 | 841 | 210 | [ |
PYN-PMN-PT | 2110 | 1340 (d33*) | 214 | [ |
PZT-PZNN | 2300 | 920 (d33*) | 256 | [ |
Table 1 Performance parameters of textured ternary PT-based ceramics[60,70 -71,73 -74,76]
Composition | Relative permittivity, εr | d33/(pC·N-1) | Curie temperature, TC/℃ | Ref. |
---|---|---|---|---|
PMN-PZT | / | 878 (d33*) | 220 | [ |
PMN-PZT | 2310 | 1100 | 204 | [ |
PIN-PMN-PT | / | 780 | 225 | [ |
PIN-PMN-PT | 2415 | 841 | 210 | [ |
PYN-PMN-PT | 2110 | 1340 (d33*) | 214 | [ |
PZT-PZNN | 2300 | 920 (d33*) | 256 | [ |
Fig. 15 Schematic illustration and experimental realization of PZT texturing process[91] (a) Schematic illustration of the proposed texturing process with the color of PZT matrix indicating composition; (b, c) Cross-sectional SEM images for samples with average Zr : Ti ratio of 55 : 45 sintered at different temperatures, where (b) is an enlarged image of the layer with 3% (in volume) BZT templates in (c); (d) SEM-EDS images of Zr element, where the sample is the same as that in (c)
[1] | LI X, WANG Z, HE C, et al. Growth and piezo-/ferroelectric properties of PIN-PMN-PT single crystals. Journal of Applied Physics, 2012, 111: 034105. |
[2] | CHANG Y, STEPHEN F P, YANG Z, et al. (001) textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature rang. Applied Physics Letters, 2009, 95: 232905. |
[3] | DAUMONT C, REN W, INFANTE I C. Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films. Journal of Physics: Condensed Matter, 2012, 24(16): 162202. |
[4] | ZHANG Q, BHARTU V, ZHAO X. Giant electrostriction and relaxor ferroelectric bahavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, 1998, 280(2372): 2101. |
[5] | ZHOU M, SUN M, LI M M. Fabrication and properties of 1-3-2 multi-element piezoelectric composite. Journal of Electroceramics, 2012, 28(2/3): 139. |
[6] | LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science, 2019, 364(6437): 264. |
[7] | LEE S T F, LAM K H, ZHANG X M. High-frequency ultrasonic transducer based on lead-free BSZT piezoceramics. Ultrasonics, 2011, 51(7): 811. |
[8] | DA SILVA B R C, WERNECK M M. Optical high-voltage sensor based on fiber Bragg grating and PZT piezoelectric ceramics. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 2118. |
[9] | ZHENG Y Y, JIANG X P, JIANG F L. The properties of Mn-doped (Na(1-x)Kx)0.5Bi0.5TiO3 lead-free ceramics and their application as filters. Rare Metal Materials and Engineering, 2008, 37(1): 759. |
[10] | GENG H F, ZENG K, WANG B Q, et al. Giant electric field- induced strain in lead-free piezoceramics. Science, 2022, 378(6624): 1125. |
[11] | SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432: 84. |
[12] | WEI H G, WANG H, XIA Y J, et al. An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 2018, 6: 12446. |
[13] | RODEL J, JO W, SEIFER K, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153. |
[14] | LI P, ZHAI J W, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Advanced Materials. 2018, 30: 1705171. |
[15] | LIU Y C, CHANG Y F, LI F, et al. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba, Ca)(Ti, Zr)O3 through integrating crystallographic texture and domain engineering. ACS Applied Materials & Interfaces, 2017, 9: 29863. |
[16] | PARK S E, SHROUT T R. Relaxor based ferroelectric single crystals for electro-mechanical actuators. Materials Research Innovations, 1997, 1(1): 20. |
[17] | ZHANG S J, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. Journal of Applied Physics, 2012, 111(3): 031301. |
[18] | SUN E W, CAO W W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Progress in Materials Science, 2014, 65: 124. |
[19] | LUO N N, LI Y Y, XIA Z G, et al. Progress in lead-based ferroelectric and antiferroelectric single crystals: composition modification, crystal growth and properties. CrystEngComm, 2012, 14: 4547. |
[20] | MESSING G, TROLIER-MCKINSTRY S, SABOLSKY E M, et al. Templated grain growth of textured piezoelectric ceramics. Critical Reviews in Solid State and Materials Sciences, 2004, 29: 45. |
[21] | MESSING G, POTERALA S, CHANG Y F, et al. Texture-engineered ceramics—property enhancements through crystallographic tailoring. Journal of Materials Research, 2017, 32: 3219. |
[22] | MORIANA A, ZHANG S J. Lead-free textured piezoceramics using tape casting: a review. Journal of Materiomics, 2018, 4: 277. |
[23] | WU J, ZHANG S J, LI F. Prospect of texture engineered ferroelectric ceramics. Applied Physics Letters, 2022, 121: 120501. |
[24] | 杨帅, 王明文, 吴杰, 等. 铅基织构压电陶瓷研究进展. 硅酸盐学报, 2022, 50(3): 598. |
[25] | ZHANG Z, DUAN X M, QIU B F, et al. Preparation and anisotropic properties of textured structural ceramics: a review. Journal of Advanced Ceramics, 2019, 8: 289. |
[26] | LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. Journal of Inorganic and Nuclear Chemistry, 1959, 9: 113. |
[27] | DOLLASE W A. Correction of intensities for preferred orientation in powder diffractometry—application of the March model. Journal of Applied Crystallography, 1986, 19: 267. |
[28] | GOYAL A, FEENSTRA R, LIST F A, et al. Using RABiTS to fabricate high-temperature superconducting wire. JOM, 1999, 51: 19. |
[29] | JIN S, SHERWOOD R C, DOVER R B, et al. High TC superconductors-composite wire fabrication. Applied Physics Letters, 1987, 51: 203. |
[30] | SAKKA Y, SUZUKI T S. Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field. Journal of the Ceramic Society of Japan, 2005, 113: 26. |
[31] | 吴杰. PbTiO3基三元弛豫铁电陶瓷的晶向织构和电学性能研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2019. |
[32] | SABOLSKY E M, MESSING G, TROLIER-MCKINSTRY S. Kinetics of templated grain growth of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3. Journal of the American Ceramic Society, 2001, 84(11): 2507. |
[33] | YAN Y K, CHO K, PRIYA S. Templated grain growth of <001>-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 piezoelectric ceramics for magnetic field sensors. Journal of the American Ceramic Society, 2011, 94(6): 1784. |
[34] | HUANG Q W, XU J, ZHU L H, et al. Molten salt synthesis of acicular Ba2NaNb5O15 seed crystals. Journal of the American Ceramic Society, 2005, 88(2): 447. |
[35] | KAN Y M, JIN X H, WANG P L, et al. Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes. Materials Research Bulletin, 2003, 38: 567. |
[36] | SCHAAK R E, MALLOUK T E. Perovskites by design: a toolbox of solid-state reactions. Chemical Materials, 2002, 14: 1455. |
[37] | SCHAAK R E, MALLOUK T E. Topochemical synthesis of three-dimensional perovskites from lamellar precursors. Journal of the American Ceramic Society, 2000, 122: 2798. |
[38] | WATARI K, BRAHMAROUTU B, MESSING G, et al. Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3. Journal of Materials Research, 2000, 15: 846. |
[39] | LIU Y F, LU Y N, XU M, et al. Topochemical reaction of SrTiO3 platelet crystals based on Sr3Ti2O7 platelet precursor in molten salt synthesis process. Materials Chemistry and Physics, 2009, 114: 37. |
[40] | LIU H X, SUN X Q, ZHAO Q L, et al. The syntheses and microstructures of tabular SrTiO3 crystal. Solid-State Electronics, 2003, 47: 2295. |
[41] | SAITO Y, TAKAO H. Synthesizing of platelike {100} SrTiO3 particle by topochemical microcrystal conversion method. Japanese Journal of Applied Physics, 2006, 45: 7377. |
[42] | CHANG Y F, NING H P, WU J, et al. Formation mechanism of (001) oriented perovskite SrTiO3 microplatelets synthesized by topochemical microcrystal conversion. Inorganic Chemistry, 2014, 53: 11060. |
[43] | WU J, CHANG Y F, LV W M, et al. Topochemical transformation of single crystalline SrTiO3 microplatelets from Bi4Ti3O12 precursors and their orientation-dependent surface piezoelectricity. CrystEngComm, 2018, 20: 3084. |
[44] | LIU D, YAN Y K, ZHOU H P. Synthesis of micron-scale platelet BaTiO3. Journal of the American Ceramic Society, 2007, 90(4): 1323. |
[45] | KRZMANC M M, JANCAR B, URSIC H, et al. Tailoring the shape, size, crystal structure, and preferential growth orientation of BaTiO3 plates synthesized through a topochemical conversion process. Crystal Growth & Design, 2017, 17: 3210. |
[46] | FENG Q, HIRASAWA M, YANAGISAWA K. Synthesis of crystal- axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process. Chemistry Materials, 2001, 13: 290. |
[47] | FENG Q, ISHIKAWA Y, MAKITA Y, et al. Solvothermal soft chemical synthesis and characterization of plate-like particles constructed from oriented BaTiO3 nanocrystals. Journal of the Ceramic Society of Japan, 2010, 118(2): 141. |
[48] | LV D Y, ZUO R Z, SU S. Processing and morphology of (111) BaTiO3 crystal platelets by a two-step molten salt method. Journal of the American Ceramic Society, 2012, 95(6): 1838. |
[49] | FU J, HOU Y D, ZHENG M P, et al. Topochemical conversion of (111) BaTiO3 piezoelectric microplatelets using Ba6Ti17O40 as the precursor. Crystal Growth & Design, 2019, 19: 1198. |
[50] | POTERALA S F, MEYER R J, MESSING G L. Synthesis of high aspect ratio PbBi4Ti4O15 and topochemical conversion to PbTiO3-based microplatelets. Journal of the American Ceramic Society, 2011, 94(8): 2323. |
[51] | LI L L, WANG J, GUO Q L, et al. Fabrication and topchemical transformation mechanism of PbTiO3 microplatelets. Ceramics International, 2023, 49: 7970. |
[52] | NA Y, KWON J, NAHM S, et al. Morphological evolution of PbTiO3 microstructures synthesized by topochemical microcrystal conversion. Journal of the American Ceramic Society, 2022, 105: 47512. |
[53] | FU J, HOU Y, ZHENG M, et al. Topochemical build-up of BaTiO3 nanorods using BaTi2O5 as the template. CrystEngComm, 2017, 19: 1115. |
[54] | HUANG K, HUANG T, HSIEH W. Morphology-controlled synthesis of barium titanate nanostructures. Inorganic Chemistry, 2009, 48: 9180. |
[55] | HAYASHI Y, KIMURA T, TAKASHI Y. Preparation of rod-shaped BaTiO3 powder. Journal of Materials Science, 1986, 21: 757. |
[56] | CHENG L, LI J. A review on one dimensional perovskite nanocrystals for piezoelectric applications. Journal of Materiomics, 2016, 2: 25. |
[57] | DENG Y, WANG J, ZHU K, et al. Synthesis and characterization of single-crystal PbTiO3 nanorods. Material Letters, 2005, 59: 3272. |
[58] | DENG H, QIU Y, YANG S. General surfactant-free synthesis of MTiO3 (M=Ba, Sr, Pb) perovskite nanostrips. Journal of Materials Chemistry, 2009, 19: 976. |
[59] | SABOLSKY E M, TROLIER-MCKINSTRY S, MESSING G. Dielectric and piezoelectric properties of <001> fiber-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics. Journal of Applied Physics, 2003, 93(7): 4072. |
[60] | RICHTER T, DENNELER S, SCHUH C, et al. Textured PMN-PT and PMN-PZT. Journal of the American Ceramic Society, 2008, 91(3): 929. |
[61] | KWON S, SABOLSKY E M, MESSING G, et al. High strain, <001> textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics: templated grain growth and piezoelectric properties. Journal of the American Ceramic Society, 2005, 88(2): 312. |
[62] | BROSNAN K H, POTERALA S F, MEYER R J, et al. Templated grain growth of <001> textured PMN-28PT using SrTiO3 templates. Journal of the American Ceramic Society, 2009, 92(S1): S133. |
[63] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Processing, texture quality, and piezoelectric properties of <001>C textured (1-x)Pb(Mg1/3Nb2/3)TiO3-xPbTiO3 ceramics. Journal of Applied Physics, 2011, 110: 014105. |
[64] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Fabrication and properties of radially <001>C textured PMN-PT cylinders for transducer applications. Journal of Applied Physics, 2012, 112: 014105. |
[65] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN-PT ceramics. Journal of Materials Research, 2013, 28(21): 2960. |
[66] | AMORIN H, URSIC H, RAMOS P, et al. Pb(Mg1/3Nb2/3)O3-PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach. Journal of the American Ceramic Society, 2014, 97(2): 420. |
[67] | THI M P, MARCH G, COLOMBAN P. Phase diagram and Raman imaging of grain growth mechanisms in highly textured Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics. Journal of the European Ceramic Society, 2005, 25: 3335. |
[68] | YAN Y K, ZHOU Y, PRIYA S. Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O3-PbTiO3 <001>C radially textured cylinders. Applied Physics Letters, 2010, 104: 012910. |
[69] | YAN Y K, WANG Y U, PRIYA S. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Applied Physics Letters, 2012, 100: 192905. |
[70] | YAN Y K, CHO K, MAURYA D, et al. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics. Applied Physics Letters, 2013, 102: 042903. |
[71] | CHANG Y F, SUN Y, WU J, et al. Formation mechanism of highly [001]C textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity. Journal of the European Ceramic Society, 2016, 36: 1973. |
[72] | CHANG Y F, WATSON B, FANTON M, et al. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics. Applied Physics Letters, 2017, 111: 232901. |
[73] | WEI D D, YUAN Q B, ZHANG G Q, et al. Templated grain growth and piezoelectric properties of <001>-textured PIN-PMN-PT ceramics. Journal of Materials Research, 2015, 30(14): 2144. |
[74] | DURAN C, DURSUN S, AKÇA E. High strain, <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 piezoelectric ceramics. Scripta Materialia, 2016, 113: 14. |
[75] | DURAN C, CENGIZ S, ECEBAŞ N. Processing and characterization of <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 ceramics. Journal of Materials Research, 2017, 32(13): 2471. |
[76] | LEE T, LEE H, PARK S, et al. Structural and piezoelectric properties of <001> textured PZT-PZNN piezoelectric ceramics. Journal of the American Ceramic Society, 2017, 100: 5681. |
[77] | ZHOU J E, YAN Y K, PRIYA S, et al. Computational study of textured ferroelectric polycrystals: dielectric and piezoelectric properties of template-matrix composites. Journal of Applied Physics, 2017, 121: 024101. |
[78] | MING C, YANG T N, LUAN K, et al. Microstructural effects on effective piezoelectric responses of textured PMN-PT ceramics. Acta Materialia, 2018, 145: 62. |
[79] | SEABAUGH M M, SUVACI E, BRAHMAROUTU B, et al. Modeling anisotropic single crystal growth kinetics in liquid phase sintered α-Al2O3. Interface Science, 2000, 8: 257. |
[80] | YANG S, WANG M W, WANG L, et al. Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics. Journal of the American Ceramic Society, 2022, 105: 3322. |
[81] | LIU L J, YANG B, LV R, et al. Enhanced unipolar electrical fatigue resistance and related mechanism in grain-oriented Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 piezoceramics. Journal of Materials Science & Technology, 2023, 145: 40. |
[82] | WEI D D, WANG H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3. Journal of the American Ceramic Society, 2017, 100: 1073. |
[83] | YANG S, LI J L, LIU Y, et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nature Communications, 2021, 12: 1414. |
[84] | JIA H R, LI Z, WU F, et al. Extremely large strain response under low driving electric fields in lead-based textured piezoelectric ceramics. Ceramics International, 2023, 49: 2806. |
[85] | LENG H Y, YAN Y K, WANG B, et al. High performance high-power textured Mn/Cu-doped PIN-PMN-PT ceramics. Acta Materialia, 2022, 234: 118015. |
[86] | LIU H R, YAN Y K, LENG H Y, et al. High performance high power textured piezoceramics. Applied Physics Letters, 2020, 116: 252901. |
[87] | YAN Y K, GENG L W, ZHU L F, et al. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Advanced Science, 2022, 9: 2105715. |
[88] | 刘琳婧. 高性能PMN-PZ-PT基织构陶瓷的构筑及在超声换能器中的应用研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2024. |
[89] | QIU R G, GUO F F, WU J, et al. Enhanced grain orientation degree and electrical properties in PSN-PMN-PT textured ceramics under the effect of sintering aids. Journal of Materials Science & Technology, 2024, 199: 114. |
[90] | DEVEMY S, COURTOIS C, CHAMPAGNE P, et al. Textured PZT ceramics. Powder Technology, 2009, 190(1/2): 141. |
[91] | LI J L, QU W B, DANIELS J, et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science, 2023, 380(6640): 87. |
[1] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[2] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[3] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[4] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[5] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[6] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[7] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[8] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[9] | GAO Tianyu, LIU Dong, ZHAO Sixue, DENG Wei, ZHANG Boping, ZHU Lifeng. K0.5Na0.5NbO3-based Piezoelectric Ceramics: Excellent Temperature Stability and Application in Type 1-3 Transducer [J]. Journal of Inorganic Materials, 2025, 40(3): 297-304. |
[10] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[11] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[12] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[13] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[14] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
[15] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||