Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (1): 70-76.DOI: 10.15541/jim20240304
• RESEARCH ARTICLE • Previous Articles Next Articles
MA Junjie1(), YANG Yuying1, GAO Mingyang1, QI Bingjie1, WU Yulong1,2, HUANG Xueli1, HUANG He1(
)
Received:
2024-06-21
Revised:
2024-08-26
Published:
2025-01-20
Online:
2024-09-02
Contact:
HUANG He, associate professor. E-mail: xjuhuanghe@xju.edu.cnAbout author:
MA Junjie (2002-), male, undergraduate. E-mail: 2165471663@qq.com
Supported by:
CLC Number:
MA Junjie, YANG Yuying, GAO Mingyang, QI Bingjie, WU Yulong, HUANG Xueli, HUANG He. Preparation and Activity of CeO2 Nanoparticles in Synthesis of Polycarbonates from CO2[J]. Journal of Inorganic Materials, 2025, 40(1): 70-76.
Sample | Average particle size/nm | Relative crystallinity/% | ID/IF2g |
---|---|---|---|
CeO2-500 | 8.3 | 74.3 | 0.029 |
CeO2-600 | 11.7 | 81.4 | 0.036 |
CeO2-700 | 15.8 | 82.9 | 0.014 |
CTAB-CeO2 | 10.0 | 82.6 | 0.045 |
SDS-CeO2 | 10.5 | 80.1 | 0.039 |
PEG-CeO2 | 9.3 | 76.5 | 0.024 |
Table 1 Physicochemical properties of samples
Sample | Average particle size/nm | Relative crystallinity/% | ID/IF2g |
---|---|---|---|
CeO2-500 | 8.3 | 74.3 | 0.029 |
CeO2-600 | 11.7 | 81.4 | 0.036 |
CeO2-700 | 15.8 | 82.9 | 0.014 |
CTAB-CeO2 | 10.0 | 82.6 | 0.045 |
SDS-CeO2 | 10.5 | 80.1 | 0.039 |
PEG-CeO2 | 9.3 | 76.5 | 0.024 |
Fig. 2 Micro-morphological characterization of samples (a-c) SEM images of (a) CeO2-500, (b) CeO2-600 and (c) CeO2-700; (d-e) TEM images of (d) CeO2-600 and (e) CTAB-CeO2; (f) HRTEM image of CeO2-600
Sample | C/% | S/% | Y/% | Mn/(g·mol-1) | Dp |
---|---|---|---|---|---|
CeO2-500 | 86.4 | 67.1 | 58.0 | 982 | 6 |
CeO2-600 | 88.9 | 74.5 | 66.3 | 1171 | 8 |
CeO2-700 | 85.6 | 5.9 | 5.1 | 1153 | 8 |
CTAB-CeO2 | 91.0 | 76.6 | 69.7 | 1333 | 9 |
SDS-CeO2 | 90.5 | 76.1 | 68.9 | 1108 | 8 |
PEG-CeO2 | 88.8 | 43.3 | 38.5 | 1169 | 8 |
Table 2 Test results of reaction of CO2 and 1,6-HDO on CeO2 catalysts
Sample | C/% | S/% | Y/% | Mn/(g·mol-1) | Dp |
---|---|---|---|---|---|
CeO2-500 | 86.4 | 67.1 | 58.0 | 982 | 6 |
CeO2-600 | 88.9 | 74.5 | 66.3 | 1171 | 8 |
CeO2-700 | 85.6 | 5.9 | 5.1 | 1153 | 8 |
CTAB-CeO2 | 91.0 | 76.6 | 69.7 | 1333 | 9 |
SDS-CeO2 | 90.5 | 76.1 | 68.9 | 1108 | 8 |
PEG-CeO2 | 88.8 | 43.3 | 38.5 | 1169 | 8 |
Sample | SBET/(m2·g-1) | Proe volume/ (cm3·g-1) | Average pore size/nm |
---|---|---|---|
CeO2-500 | 118 | 0.76 | 27.91 |
CeO2-600 | 113 | 0.80 | 28.27 |
CeO2-700 | 42 | 0.30 | 31.26 |
CTAB-CeO2 | 119 | 0.92 | 30.39 |
Table S1 Specific surface area, pore volume, and average pore size of samples
Sample | SBET/(m2·g-1) | Proe volume/ (cm3·g-1) | Average pore size/nm |
---|---|---|---|
CeO2-500 | 118 | 0.76 | 27.91 |
CeO2-600 | 113 | 0.80 | 28.27 |
CeO2-700 | 42 | 0.30 | 31.26 |
CTAB-CeO2 | 119 | 0.92 | 30.39 |
Sample | Peak number | Temperature at maximum/℃ | Quantity/ (mmol·g-1) |
---|---|---|---|
CeO2-500 | 2 | 116.6 | 0.214 |
269.8 | 0.104 | ||
CeO2-600 | 1 | 156.6 | 0.403 |
CeO2-700 | 1 | 137.3 | 0.288 |
CTAB-CeO2 | 1 | 146.3 | 0.532 |
Table S2 Analysis of CO2-TPD test data of samples
Sample | Peak number | Temperature at maximum/℃ | Quantity/ (mmol·g-1) |
---|---|---|---|
CeO2-500 | 2 | 116.6 | 0.214 |
269.8 | 0.104 | ||
CeO2-600 | 1 | 156.6 | 0.403 |
CeO2-700 | 1 | 137.3 | 0.288 |
CTAB-CeO2 | 1 | 146.3 | 0.532 |
Number of reaction | 1 | 2 | 3 |
---|---|---|---|
1,6-HDO conversion/% | 91.0 | 88.9 | 86.3 |
Table S3 Stability test of CTAB-CeO2
Number of reaction | 1 | 2 | 3 |
---|---|---|---|
1,6-HDO conversion/% | 91.0 | 88.9 | 86.3 |
[1] | WANG W H, HIMEDA Y, MUCKERMAN J T, et al. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chemical Reviews, 2015, 115(23): 12936. |
[2] | JIANG X, NIE X, GUO X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020, 120(15): 7984. |
[3] | GUO L, SUN J, GE Q, et al. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons. Journal of Materials Chemistry A, 2018, 6(46): 23244. |
[4] | LI W, WANG H, JIANG X, et al. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8(14): 7651. |
[5] | CHEN H, CHAUHAN P, YAN N. “Barking” up the right tree: biorefinery from waste stream to cyclic carbonate with immobilization of CO2 for non-isocyanate polyurethanes. Green Chemistry, 2020, 22(20): 6874. |
[6] | HONDA M, SONEHAR S, YASUDA H, et al. Heterogeneous CeO2 catalyst for the one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chemistry, 2011, 13(12): 3406. |
[7] | GRIGNARD B, GENNEN S, JÉRÔME C, et al. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chemical Society Reviews, 2019, 48(16): 4466. |
[8] | ZHANG X, FEVRE M, JONES G O, et al. Catalysis as an enabling science for sustainable polymers. Chemical Reviews, 2017, 118(2): 839. |
[9] | KAMPHUIS A J, PICCHIONI F, PESCARMONA P P. CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry, 2019, 21(3): 406. |
[10] | LEINO E, MAKI-ÄRVELA P, ETA V, et al. Conventional synthesis methods of short-chain dialkylcarbonates and novel production technology via direct route from alcohol and waste CO2. Applied Catalysis A: General, 2010, 383(1/2): 1. |
[11] | KUMAR P, WITH P, SRIVASTAVA V C, et al. Conversion of carbon dioxide along with methanol to dimethyl carbonate over ceria catalyst. Journal of Environmental Chemical Engineering, 2015, 3(4): 2943. |
[12] | FU Z, YU Y, LI Z, et al. Surface reduced CeO2 nanowires for direct conversion of CO2 and methanol to dimethyl carbonate: catalytic performance and role of oxygen vacancy. Catalysts, 2018, 8(4): 164. |
[13] | TAMURA M, ITO K, HONDA M, et al. Direct copolymerization of CO2 and diols. Scientific Reports, 2016, 6(1): 20438. |
[14] | BAGHERI S, KHALIL I, JULKAPLI N M. Cerium(IV) oxide nanocomposites: catalytic properties and industrial application. Journal of Rare Earths, 2021, 39(2): 129. |
[15] | CASTKOVA K, MATOUSEK A, BARTONICKOVA E, et al. Sintering of Ce, Sm, and Pr oxide nanorods. Journal of the American Ceramic Society, 2016, 99(4): 1155. |
[16] | FILTSCHEW A, HOFMANN K, HESS C. Ceria and its defect structure: new insights from a combined spectroscopic approach. The Journal of Physical Chemistry C, 2016, 120(12): 6694. |
[17] | SCHILLING C, HOFMANN A, HESS C, et al. Raman spectra of polycrystalline CeO2: a density functional theory study. The Journal of Physical Chemistry C, 2017, 121(38): 20834. |
[18] | SCHILLING C, GANDUGLIA-PIROVANO M V, HESS C. Experimental and theoretical study on the nature of adsorbed oxygen species on shaped ceria nanoparticles. The Journal of Physical Chemistry Letters, 2018, 9(22): 6593. |
[19] | WU Z, LI M, HOWE J, et al. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir, 2010, 26(21): 16595. |
[20] | YANG G, JIA A, LI J, et al. Investigation of synthesis parameters to fabricate CeO2 with a large surface and high oxygen vacancies for dramatically enhanced performance of direct DMC synthesis from CO2 and methanol. Molecular Catalysis, 2022, 528: 112471. |
[21] | LIU B, LI C, ZHANG G, et al. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catalysis, 2018, 8(11): 10446. |
[22] | EAIMSUMANG S, CHOLLACOOP N, LUENGNARUEMITCH-AI A, et al. Ceria nanorod supported gold nanoparticles as structured catalysts for the oxidative steam reforming of methanol: effect of CTAB concentration on physiochemical properties and catalyst performance. Journal of Catalysis, 2020, 392: 254. |
[23] | CHAVHAN M P, LU C H, SOM S. Urea and surfactant assisted hydrothermal growth of ceria nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 124944. |
[24] | MEI J, ZHANG S, PAN G, et al. Surfactant-assisted synthesis of MOF- derived CeO2 for low-temperature catalytic o-xylene combustion. Journal of Environmental Chemical Engineering, 2022, 10(6): 108743. |
[25] | WANG X, JIANG Z, ZHENG B, et al. Synthesis and shape- dependent catalytic properties of CeO2 nanocubes and truncated octahedra. CrystEngComm, 2012, 14(22): 7579. |
[26] | GONG Z J, LI Y R, WU H L, et al. Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst. Applied Catalysis B: Environmental, 2020, 265: 118524. |
[27] | LIU H, ZOU W, XU X, et al. The proportion of Ce4+ in surface of CexZr1-xO2 catalysts: the key parameter for direct carboxylation of methanol to dimethyl carbonate. Journal of CO2 Utilization, 2017, 17: 43. |
[28] | WANG S, ZHAO L, WANG W, et al. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale, 2013, 5(12): 5582. |
[29] | YU W Y, MULLEN G M, MULLINS C B. Hydrogen adsorption and absorption with Pd-Au bimetallic surfaces. The Journal of Physical Chemistry, 2013, 117(38): 19535. |
[30] | ZHANG T, ZHANG Y, NING P, et al. The property tuning of NH3- SCR over iron-tungsten catalyst: role of calcination temperature on surface defect and acidity. Applied Surface Science, 2021, 538: 147999. |
[31] | VANTOMME A, YUAN Z Y, DU G, et al. Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. Langmuir, 2005, 21(3): 1132. |
[32] |
PARIA S, KHILAR K C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Advances in Colloid and Interface Science, 2004, 110(3): 75.
PMID |
[33] | WU Z, MANN A K P, LI M, et al. Spectroscopic investigation of surface-dependent acid-base property of ceria nanoshapes. The Journal of Physical Chemistry C, 2015, 119(13): 7340. |
[1] | LI Xue-Lin, ZHU Jian-Feng, JIAO Yu-Hong, HUANG Jia-Xuan, ZHAO Qian-Nan. Manganese Dioxide Morphology on Electrochemical Performance of Ti3C2Tx@MnO2 Composites [J]. Journal of Inorganic Materials, 2020, 35(1): 119-125. |
[2] | ZHANG Guo-Xiong, CHEN Yue-Mei, HE Zhen-Ni, LIN Chuan, CHEN Yi-Gang, GUO Hai-Bo. Surfactant Dependence of Nanostructured NiCo2S4 Films on Ni Foam for Superior Electrochemical Performance [J]. Journal of Inorganic Materials, 2018, 33(3): 289-294. |
[3] | ZHENG Lei, LI Jin, LIU Hong-Bo. Carbon Aerogels Prepared Based on Sol-Gel Reaction of Cellulose Colloid with AEP and Its Adsorption of Copper Ions in Aqueous Solution [J]. Journal of Inorganic Materials, 2017, 32(11): 1159-1164. |
[4] | QI Mei-Li, QI Jia, XIAO Gui-Yong, LV Yu-Peng. Effect of Surfactants on the Morphology of Hydroxyapatite Fibers [J]. Journal of Inorganic Materials, 2016, 31(7): 726-730. |
[5] | LIANG Pei, XING Song, SHU Hai-Bo, ZHANG Lin, HU Chen-Li. Analogous Three-dimensional MoS2/Graphene Composites for Reversible Li Storage [J]. Journal of Inorganic Materials, 2016, 31(6): 575-580. |
[6] | GAN Qiong-Zhi, WEN Xiao-Ling, DING Yi-Ming, OUYANG Jian-Ming. Adsorption of Cetyltrimethylammonium Bromide on Different-sized Calcium Oxalate Monohydrate and Dihydrate Crystals [J]. Journal of Inorganic Materials, 2016, 31(2): 159-164. |
[7] | XU Jin-Fang, SHAO Meng-Meng, NI Zhe-Ming, XIAO Xue-Chun. Surface Properties of Magnesium-iron Hydrotalcite and Its Modified Products by Inverse Gas Chromatography [J]. Journal of Inorganic Materials, 2015, 30(9): 971-976. |
[8] | JU Xiang-Wen, WU Ri-Min, ZHOU Ya-Zhou, MA Shuang-Biao, YANG Juan, CHENG Xiao-Nong. Application of Graphene Oxide in Synthesis of Sc2W3O12 Powder [J]. Journal of Inorganic Materials, 2015, 30(4): 374-378. |
[9] | ZHAO Jing-Jing, SHEN Jun, ZOU Li-Ping, WANG Wen-Qin, ZU Guo-Qing, ZHANG Zhi-Hua. A Low-cost Preparation of SiO2 Aerogel Monoliths from Silica Sol [J]. Journal of Inorganic Materials, 2015, 30(10): 1081-1084. |
[10] | ZHANG Xiao-Qiang, SUN Yi, SHIMAI Shun-Zo, WANG Shi-Wei. Effect of Water-soluble Epoxy Resin on Microstructure and Properties of Porous Alumina Ceramics by Gel-casting [J]. Journal of Inorganic Materials, 2015, 30(10): 1085-1088. |
[11] |
WANG Jin,CHENG Xue-Lian,WANG Zi-Gang,YANG Hui.
Synthesis and Electrochemical Properties of Highly Dispersed Li4Ti5O12 Nanocrystalline as Anode Material for Lithium Secondary Batteries [J]. Journal of Inorganic Materials, 2010, 25(3): 235-241. |
[12] |
ZHU Zhen-Feng,SUN Hong-Jun,LIU Hui,YANG Dong,ZHANG Jian-Quan,GUO Li-Ying.
Surfactant Assisted Hydrothermal and Thermaldecomposition Synthesis of Alumina Microfibers with Mesoporous Structures [J]. Journal of Inorganic Materials, 2009, 24(5): 1003-1007. |
[13] | CHEN Lu-Song,HUANG Zheng-Ming,XUE Cong. PC Nanofiber Reinforced PMMA Transparent Composites Incorporated with TiO2 NanoParticles [J]. Journal of Inorganic Materials, 2009, 24(3): 469-474. |
[14] | PENG Yin,BAO Ling,LIU Zheng-Yin,WEI Xian-Wen. Synthesis and Characterization of Doughnuts Like Cd(OH)2 Microstructure [J]. Journal of Inorganic Materials, 2008, 23(5): 1054-1058. |
[15] | LIAO Jian-Guo,WANG Xue-Jiang,ZUO Yi,ZHANG Li,WEN Ji-Qiu,LI Yu-Bao. Surface Modification of Nano-Hydroxyapatite with Silane Agent [J]. Journal of Inorganic Materials, 2008, 23(1): 145-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||