Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (10): 1151-1158.DOI: 10.15541/jim20240143
Special Issue: 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHOU Yunkai1,2(), DIAO Yaqi1,3, WANG Minglei1,3, ZHANG Yanhui1,3(
), WANG Limin1,3
Received:
2024-03-25
Revised:
2024-05-29
Published:
2024-10-20
Online:
2024-10-09
Contact:
ZHANG Yanhui, lecturer. E-mail: yhzhang@ysu.edu.cnAbout author:
ZHOU Yunkai (1986-), male, lecturer. E-mail: zhouyunkai1986@hotmail.com
Supported by:
CLC Number:
ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2[J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158.
System | a/Å | dTi1-C/Å | dTi2-C/Å |
---|---|---|---|
Ti3C2 | 3.10[TW], 3.06[ | 2.14[TW], 2.22[ | 2.09[TW], 2.05[ |
Ti3C2(OH)2 | 3.08[TW], 3.09[ | 2.18[TW], 2.21[ | 2.08[TW], 2.08[ |
Ti3C2O2 | 3.04[TW], 3.09[ | 2.23[TW], 2.20[ | 2.16[TW], 2.14[ |
Table 1 Lattice parameters and Ti-C bond lengths in Ti3C2, Ti3C2(OH)2 and Ti3C2O2
System | a/Å | dTi1-C/Å | dTi2-C/Å |
---|---|---|---|
Ti3C2 | 3.10[TW], 3.06[ | 2.14[TW], 2.22[ | 2.09[TW], 2.05[ |
Ti3C2(OH)2 | 3.08[TW], 3.09[ | 2.18[TW], 2.21[ | 2.08[TW], 2.08[ |
Ti3C2O2 | 3.04[TW], 3.09[ | 2.23[TW], 2.20[ | 2.16[TW], 2.14[ |
Fig. 4 Front and top views of the oxygen adsorption sites on Ti3C2 surface and their adsorption energies (a1, a2) TiA, the atop site, (b1, b2) TiB, the bridge site and (c1, c2) TiC, the hollow site of Ti atoms located on the Ti3C2 surface
Fig. 5 Front and top views of the oxygen adsorption sites on Ti3C2(OH)2 surface and their adsorption energies (a1, a2) HA, the atop site, (b1, b2) HB, the bridge site and (c1, c2) HC, the hollow site of H atoms located on the Ti3C2(OH)2 surface
Fig. 6 Front and top views of the oxygen adsorption sites on Ti3C2O2 surface and their adsorption energies (a1, a2) OA, the atop of -O functional group, (b1, b2) TiA, (c1, c2) TiB, and (d1, d2) TiC, are respectively the atop, the bridge and the hollow of Ti atoms located on the Ti3C2O2 surface
Fig. 7 Front and top views of the oxygen adsorption sites on red-PANI surface and their adsorption energies (a1, a2) NHA, the atop site of -NH, (b1, b2) HA, the atop site of -CH, and (c1, c2) CB, the bridge site of C atoms located on the red-PANI surface
Fig. 8 Front and top views of the oxygen adsorption sites on red-PANI/Ti3C2(OH)2 surface and their adsorption energies (a1, a2) HA, the atop site of H atoms, (b1, b2) CB, the bridge site of C atoms located on the red-PANI end surface, and (c1, c2) HC, the hollow site of H atoms located on the Ti3C2(OH)2 end
Position | TiA/HA/OA | TiB/HB/OB | TiC/HC/OC |
---|---|---|---|
@Ti3C2 | 3.10 | 3.08 | 3.09 |
@Ti3C2(OH)2 | 3.10 | 3.07 | 3.11 |
@Ti3C2O2 | 3.04 | 3.04 | 3.04 |
Table 2 Lattice parameters a (Å) for three kinds of adsorption sites on surfaces of Ti3C2, Ti3C2(OH)2 and Ti3C2O2
Position | TiA/HA/OA | TiB/HB/OB | TiC/HC/OC |
---|---|---|---|
@Ti3C2 | 3.10 | 3.08 | 3.09 |
@Ti3C2(OH)2 | 3.10 | 3.07 | 3.11 |
@Ti3C2O2 | 3.04 | 3.04 | 3.04 |
System | Atom label | Before | After | Transfer |
---|---|---|---|---|
PANI | C1 | -0.01 | -0.02 | -0.01 |
C2-N | +0.45 | +0.44 | -0.01 | |
N | -1.22 | -1.23 | -0.01 | |
H1-N | +0.42 | +0.42 | 0 | |
H2 | +0.04 | +0.04 | 0 | |
Ti3C2(OH)2 | Ti1(End) | +1.57 | +1.50 | -0.07 |
Ti2(Middle) | +1.44 | +1.19 | -0.25 | |
H | +0.55 | +0.48 | -0.07 | |
O | -1.23 | -1.15 | +0.08 | |
C | -1.62 | -1.42 | +0.20 |
Table 3 Bader charge of Ti3C2(OH)2 and PANI before and after their combination, together with the electron transfer information
System | Atom label | Before | After | Transfer |
---|---|---|---|---|
PANI | C1 | -0.01 | -0.02 | -0.01 |
C2-N | +0.45 | +0.44 | -0.01 | |
N | -1.22 | -1.23 | -0.01 | |
H1-N | +0.42 | +0.42 | 0 | |
H2 | +0.04 | +0.04 | 0 | |
Ti3C2(OH)2 | Ti1(End) | +1.57 | +1.50 | -0.07 |
Ti2(Middle) | +1.44 | +1.19 | -0.25 | |
H | +0.55 | +0.48 | -0.07 | |
O | -1.23 | -1.15 | +0.08 | |
C | -1.62 | -1.42 | +0.20 |
[1] |
GOGOTSI Y, HUANG Q. MXenes: two-dimensional building blocks for future materials and devices. ACS Nano, 2021, 15: 5775.
DOI PMID |
[2] |
XUN K, ZHANG B, WANG Q, et al. Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys. J. Mater. Sci. Technol., 2023, 135: 221.
DOI |
[3] | VAHIDMOHAMMADI A, MOJTABAVI M, CAFFREY N M, et al. Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Adv. Mater., 2019, 31: 1806931. |
[4] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2017, 2: 16098. |
[5] |
MURALI G, MODIGUNTA J K R, PARK Y H, et al. A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano, 2022, 16: 13370.
DOI PMID |
[6] | DING L, JIANG R, TANG Z, et al. MXene: nanoengineering and application as electrode materials for supercapacitors. J. Inorg. Mater., 2023, 38(6): 619. |
[7] | 刘学斌, 林志强, 万艳君, 等. 低反射MXene基电磁屏蔽材料的研究进展. 材料研究与应用, 2023, 17(3): 412. |
[8] | LIU L, YING G, JIANG Q, et al. Ultra-high-temperature application of MXene: stabilization of 2D Ti3C2Tx for cross-scale strengthening and toughening of 3D TiC. J. Adv. Ceram., 2024, 13(1): 1. |
[9] | TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. J. Am. Chem. Soc., 2012, 134: 16909. |
[10] | WANG Y, CSANÁDI T, ZHANG H, et al. Enhanced hardness in high-entropy carbides through atomic randomness. Adv. Theory Simul., 2020, 3: 2000111. |
[11] | ZHOU A, LIU Y, LI S, et al. From structural ceramics to 2D materials with multi-applications: a review on the development from MAX phases to MXenes. J. Adv. Ceram., 2021, 10(6): 1194. |
[12] | QIU N, HE J, HUANG Q, et al. Tuning the surface stability and Li/Na storage of MXenes by controlling the surface termination coverage. Small, 2024, 10: 2311869. |
[13] | HABIB T, ZHAO X, SHAH S A, et al.Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl., 2019, 3: 1. |
[14] |
CHENG R, WANG J, HU T, et al. Stabilizing MXene suspension with polyhydric alcohols. J. Mater. Sci. Technol., 2023, 165: 219.
DOI |
[15] | ZHAO X, VASHISTH A, PREHN E, et al. Antioxidants unlock shelf- stable Ti3C2Tx (MXene) nanosheet dispersions. Matter, 2019, 1: 513. |
[16] | WU X, WANG Z, YU M, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater., 2017, 29: 1607017. |
[17] | LI K, WANG X, LI S, et al. An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small, 2020, 16: 1906851. |
[18] | WANG S, FENG A, LI X, et al. Pb (II) adsorption process of Fe3O4supported Ti3C2Tx. J. Inorg. Mater., 2023, 38(5): 521. |
[19] | KONG F, HE X, LIU Q, et al. Improving the electrochemical properties of MXene Ti3C2multilayer for Li-ion batteries by vacuum calcination. Electrochim Acta, 2018, 265: 140. |
[20] |
MAHLBERG D, SAKONG S, FORSTER-TONIGOLD K, et al. Improved DFT adsorption energies with semiempirical dispersion corrections. J. Chem. Theory Comput., 2019, 15: 3250.
DOI PMID |
[21] | SKYLARIS C K. A benchmark for materials simulation. Science, 2016, 351(6280): 1394. |
[22] | SUN M, SHAO P, SUN K, et al. First-principles study on interface of reduced graphene oxide reinforced aluminum matrix composites. J. Inorg. Mater., 2022, 37(6): 651. |
[23] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758. |
[24] | BLÖCHL P E. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953. |
[25] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865. |
[26] | GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15): 154104. |
[27] | ZHANG Y, SANVITO S. Atomistic simulations of surface reactions in ultra-high-temperature ceramics: O2, H2O and CO adsorption and dissociation on ZrB2 (0001) surfaces. Appl. Surf. Sci., 2021, 566: 150622. |
[28] | YU M, TRINKLE D R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys., 2011, 134(6): 064111. |
[29] | HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 2006, 36: 354. |
[30] | KURTOGLU M, NAGUIB M, GOGOTSI Y, et al. First principles study of two-dimensional early transition metal carbides. MRS Commun., 2012, 2: 133. |
[31] | LI H, LI A, ZHANG D, et al. First-principles study on the structural, electronic, and lithium storage properties of Ti3C2T2 (T = O, F, H, OH) MXene. ACS Omega, 2022, 7: 40578. |
[1] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[2] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[3] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[4] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[5] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[6] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[7] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[8] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[9] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[10] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[11] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[12] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[13] | WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3 [J]. Journal of Inorganic Materials, 2023, 38(9): 1110-1116. |
[14] | DING Haoming, LI Mian, LI Youbing, CHEN Ke, XIAO Yukun, ZHOU Jie, TAO Quanzheng, Johanna Rosen, YIN Hang, BAI Yuelei, ZHANG Bikun, SUN Zhimei, WANG Junjie, ZHANG Yiming, HUANG Zhenying, ZHANG Peigen, SUN Zhengming, HAN Meikang, ZHAO Shuang, WANG Chenxu, HUANG Qing. Progress in Structural Tailoring and Properties of Ternary Layered Ceramics [J]. Journal of Inorganic Materials, 2023, 38(8): 845-884. |
[15] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||