Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 589-605.DOI: 10.15541/jim20220331
Special Issue: 【能源环境】锂离子电池(202409)
• REVIEW • Next Articles
YANG Zhuo(), LU Yong, ZHAO Qing, CHEN Jun()
Received:
2022-06-14
Revised:
2022-12-28
Published:
2023-01-11
Online:
2023-01-11
Contact:
CHEN Jun, professor. E-mail: chenabc@nankai.edu.cnAbout author:
YANG Zhuo (1993-), male, PhD candidate. E-mail: yzhuo94@outlook.com.
Supported by:
CLC Number:
YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2023, 38(6): 589-605.
Cathode material | Crystal structure | Space group | Cell parameter | Atom site | Theoretical specific capacity/(mAh·g-1) | Working voltage/ V (vs. Li+/Li) | |
---|---|---|---|---|---|---|---|
LiFePO4 | Olivine | Pnma | a≠b≠c | Li | 4a | 170 | 3.4 |
Fe | 4c | ||||||
O | 4c/8d | ||||||
LiMn2O4 | Spinel | Fd-3m | a=b=c | Li | 8a | 148 | 4 |
Mn | 16d | ||||||
O | 32e | ||||||
LiCoO2 | Layer | R-3m | a=b≠c | Li | 3a | 274 | 3.9 |
Co | 3b | ||||||
O | 6c | ||||||
LiNixCoy(Mn/Al)1-x-yO2 | Layer | R-3m | a=b≠c | Li | 3a | 273-285 | 3.8 |
Ni/Co/Mn/Al | 3b | ||||||
O | 6c | ||||||
xLi2MnO3·(1-x)LiMO2 (0<x<1, M=Ni, Co, Mn) | Layer | R-3m+ C2/m | a=b≠c | Li | 2b/2c/4h | 273-350 | 3.8 |
Mn | 4g | ||||||
O | 4i/4j |
Table 1 Structures and properties of common cathode materials for lithium-ion batteries[24⇓⇓⇓-28]
Cathode material | Crystal structure | Space group | Cell parameter | Atom site | Theoretical specific capacity/(mAh·g-1) | Working voltage/ V (vs. Li+/Li) | |
---|---|---|---|---|---|---|---|
LiFePO4 | Olivine | Pnma | a≠b≠c | Li | 4a | 170 | 3.4 |
Fe | 4c | ||||||
O | 4c/8d | ||||||
LiMn2O4 | Spinel | Fd-3m | a=b=c | Li | 8a | 148 | 4 |
Mn | 16d | ||||||
O | 32e | ||||||
LiCoO2 | Layer | R-3m | a=b≠c | Li | 3a | 274 | 3.9 |
Co | 3b | ||||||
O | 6c | ||||||
LiNixCoy(Mn/Al)1-x-yO2 | Layer | R-3m | a=b≠c | Li | 3a | 273-285 | 3.8 |
Ni/Co/Mn/Al | 3b | ||||||
O | 6c | ||||||
xLi2MnO3·(1-x)LiMO2 (0<x<1, M=Ni, Co, Mn) | Layer | R-3m+ C2/m | a=b≠c | Li | 2b/2c/4h | 273-350 | 3.8 |
Mn | 4g | ||||||
O | 4i/4j |
Fig. 3 Schematic diagram of the crystal structures of cathode materials[25⇓⇓-28] (a) LiMPO4 (M=Fe, Mn)(© 2021, IOP Publishing)[25]; (b) LiMn2O4 (© 2022, MDPI)[26]; (c) LiMO2 (M=Ni, Co, Mn, Al) (© 2021, Elsevier Ltd.)[27]; (d) xLi2MnO3·(1-x)LiMO2 (M=Ni, Co, Mn) (© 2022, Springer Nature)[28] Colorful figures are available on website
Fig. 5 Structural evolution during high temperature synthesis of LiNi0.8Co0.2O2 (© 2017, Wiley-VCH)[41] (a) Concentration of the phases Ni(Co)O, Li2CO3, and LiNi0.8Co0.2O2 at different temperatures; (b) Ratio unit cell parameters (c/a), (c) content of Li+ occupying the 3a sites (Li sites), and (d) Ni-O and Li-O bond lengths as a function of temperature; (e) Schematic diagram of the structural evolution and variation of the interlayer distances of the Li and Ni(Co) slabs during the synthesis of LiNi0.8Co0.2O2. 1 Å=0.1 nm. Colorful figures are available on website
Fig. 6 Temperature-resolved XRD characterization of synthesis process of cathode material LiNi0.6Co0.2Mn0.2O2 (© 2021, Wiley-VCH)[43] (a) In situ XRD patterns of the mixture of Ni0.6Co0.2Mn0.2(OH)2 and LiOH·H2O during heating and (c) corresponding weight fractions of different phases as a function of temperature; (b) 3D profiles of in situ XRD patterns, corresponding (d) evolution of phase fraction and (f) lattice parameters of the samples as a function of heating temperature starting from mixture of the Ni0.6Co0.2Mn0.2CO3 and LiOH·H2O; (e) Schematic illustration of structural evolution during synthesis of LiNi0.6Co0.2Mn0.2O2; In (a, b), the subscripts T1, T2 and R represent Ni0.6Co0.2Mn0.2(OH)2 (P-3m1, T1 phase), LiNi0.6Co0.2Mn0.2O2 (R-3m, T2 phase) and the rock-salt-type, respectively. 1 Å=0.1 nm Colorful figures are available on website
Fig. 7 In-situ XRD characterization of microwave (MW) hydrothermal synthesis of NCM111(© 2020, AAAS) [44] (a) Schematic illustration of the experimental setup specialized for fast synchrotron X-ray probing of the microwave hydrothermal synthesis; (b) Time resolved synchrotron XRD patterns during MW hydrothermal synthesis of NCM111; (c) Lattice parameter c of the Ni1/3Co1/3Mn1/3(OH)2 precursor (green) as a function of temperature during solid-state synthesis (black), hydrothermal synthesis (blue), and MW hydrothermal synthesis (red). 1 Å=0.1 nm. Colorful figures are available on website
Fig. 8 In situ XRD characterization of Ni-rich cathode LiNi0.8Co0.1Mn0.1O2(NCM811) during charge-discharge (© 2015, ECS)[49] (a) In-situ XRD patterns of NCM811 cycled between 3.0-4.4 V at a rate of C/100 for two cycles; (b) Cell parameters c and a as functions of specific capacity and cell potential; (c) XRD refinement patterns, corresponding cell parameters and Li/Ni occupation information of fresh NCM811 electrode and the recovered electrodes that cycled 200 times to 4.1, 4.2, 4.3 and 4.4 V, respectively. 1 Å=0.1 nm; Ch: Charged; DisCh: Discharged. Colorful figures are available on website
Fig. 9 In-situ XRD characterization of Li1.2Ni0.13Co0.13Mn0.54O2 during charge-discharge process (© 2021, Springer Nature)[54] (a) Charge-discharge curve and corresponding contour plot of XRD pattern during the 201st cycle with the colour red to blue representing the decreasing peak intensity; (b, c) Lattice parameters (c and V) as functions of potential during the 1st and 201st cycles after the electrode activated at a rate of 0.1C. 1 Å=0.1 nm. Colorful figures are available on website
Fig. 10 In-situ XRD Rietveld refinement results of LiNi0.8Co0.1Mn0.1O2 cathode materials during charge and discharge process (© 2022, ECS)[57] (a, d) Lattice parameters a; (b, e) Lattice parameters c; (c, f) Unit cell volumes. 1 Å=0.1 nm. Colorful figures are available on website
Sample | Doped atomic radius/nm | Displace ion radius/nm | Lattice constant/nm | Lattice volume/nm3 | Interatomic distance/nm | Reliability factor |
---|---|---|---|---|---|---|
LFP | rFe = 0.172 | rFe2+ = 0.074 | a=1.031634 b=0.600129 c=0.469139 | 0.29045 | Li-O1:0.21664 Li-O2:0.20901 Li-O3:0.21651 Li-O:0.214050 | Rwp = 7.72% Rp =5.63% χ2 = 2.794 |
LFMgP | rMg = 0.172 | rMg2+ = 0.065 | a=1.031583 b=0.600035 c=0.469090 | 0.29036 | Li-O1:0.21712 Li-O2:0.21041 Li-O3:0.21665 Li-O:0.214720 | Rwp = 9.32% Rp = 6.79% χ2 = 2.878 |
LFAlP | rAl = 0.182 | rAl3+ = 0.050 | a=1.032204 b=0.600358 c=0.469072 | 0.29068 | Li-O1:0.21670 Li-O2:0.21001 Li-O3:0.21747 Li-O:0.214730 | Rwp = 9.14% Rp = 6.60% χ2 = 2.989 |
LFNiP | rNi = 0.162 | rNi2+ = 0.072 | a=1.031083 b=0.599820 c=0.468923 | 0.29001 | Li-O1:0.21734 Li-O2:0.20863 Li-O3:0.21586 Li-O:0.213950 | Rwp = 8.26% Rp = 6.12% χ2= 2.929 |
LFVP | rV = 0.192 | rV3+ = 0.074 | a=1.032223 b=0.600494 c=0.469485 | 0.291 | Li-O1:0.21864 Li-O2:0.21074 Li-O3:0.21794 Li-O:0.215770 | Rwp = 9.86% Rp = 7.15% χ2= 2.426 |
Table 2 Structure refinement result of LiFePO4 and LiFe0.95M0.05PO4 (M=Mg2+, Ni2+, Al3+, V3+) (© 2010, EC)[62]
Sample | Doped atomic radius/nm | Displace ion radius/nm | Lattice constant/nm | Lattice volume/nm3 | Interatomic distance/nm | Reliability factor |
---|---|---|---|---|---|---|
LFP | rFe = 0.172 | rFe2+ = 0.074 | a=1.031634 b=0.600129 c=0.469139 | 0.29045 | Li-O1:0.21664 Li-O2:0.20901 Li-O3:0.21651 Li-O:0.214050 | Rwp = 7.72% Rp =5.63% χ2 = 2.794 |
LFMgP | rMg = 0.172 | rMg2+ = 0.065 | a=1.031583 b=0.600035 c=0.469090 | 0.29036 | Li-O1:0.21712 Li-O2:0.21041 Li-O3:0.21665 Li-O:0.214720 | Rwp = 9.32% Rp = 6.79% χ2 = 2.878 |
LFAlP | rAl = 0.182 | rAl3+ = 0.050 | a=1.032204 b=0.600358 c=0.469072 | 0.29068 | Li-O1:0.21670 Li-O2:0.21001 Li-O3:0.21747 Li-O:0.214730 | Rwp = 9.14% Rp = 6.60% χ2 = 2.989 |
LFNiP | rNi = 0.162 | rNi2+ = 0.072 | a=1.031083 b=0.599820 c=0.468923 | 0.29001 | Li-O1:0.21734 Li-O2:0.20863 Li-O3:0.21586 Li-O:0.213950 | Rwp = 8.26% Rp = 6.12% χ2= 2.929 |
LFVP | rV = 0.192 | rV3+ = 0.074 | a=1.032223 b=0.600494 c=0.469485 | 0.291 | Li-O1:0.21864 Li-O2:0.21074 Li-O3:0.21794 Li-O:0.215770 | Rwp = 9.86% Rp = 7.15% χ2= 2.426 |
Fig. 11 XRD Rietveld refinement results of LiFePO4 before and after modification (© 2021, RSC)[63] (a, b) XRD Rietveld refinement patterns of (a) LFP/C and (b) LFP/C-YF-2; (c, d) Schematic diagrams of change in Li-O bond length of (c) LFP/C and (d) LFP/C-YF-2. 1 Å=0.1 nm. Colorful figures are available on website
Sample | a/nm | b/nm | c/nm | V/nm3 |
---|---|---|---|---|
LFP/C | 1.03229 | 0.60061 | 0.46941 | 0.29104 |
LFP/C-YF-1 | 1.03054 | 0.59985 | 0.46903 | 0.28994 |
LFP/C-YF-2 | 1.03082 | 0.59977 | 0.46874 | 0.28980 |
LFP/C-YF-3 | 1.03069 | 0.59989 | 0.46892 | 0.28994 |
Table 3 Cell parameters of LiFePO4 before and after modification by XRD refinement (© 2021, RSC)[63]
Sample | a/nm | b/nm | c/nm | V/nm3 |
---|---|---|---|---|
LFP/C | 1.03229 | 0.60061 | 0.46941 | 0.29104 |
LFP/C-YF-1 | 1.03054 | 0.59985 | 0.46903 | 0.28994 |
LFP/C-YF-2 | 1.03082 | 0.59977 | 0.46874 | 0.28980 |
LFP/C-YF-3 | 1.03069 | 0.59989 | 0.46892 | 0.28994 |
Atom | Site | x | y | z | Occupancy | Uiso |
---|---|---|---|---|---|---|
Lia | 3a | 0 | 0 | 0 | 1.000 | 0.014(6) |
Coa | 3b | 0 | 0 | 0.50000 | 1.000 | 0.023(8) |
Oa | 6c | 0 | 0 | 0.2300(6) | 1.000 | 0.049(1) |
Lib | 3a | 0 | 0 | 0 | 0.98(1) | 0.020(1) |
Mgb | 3a | 0 | 0 | 0 | 0.01(9) | 0.020(1) |
Cob | 3b | 0 | 0 | 0.50000 | 0.99(7) | 0.001(2) |
Alb | 3b | 0 | 0 | 0.50000 | 0.002(0) | 0.001(2) |
Tib | 3b | 0 | 0 | 0.50000 | 0.001(0) | 0.001(2) |
Ob | 6c | 0 | 0 | 0.2476(3) | 1.000 | 0.068(5) |
Table 4 XRD refinement result of Al, Ti, Mg co-doped LiCoO2 and bare LiCoO2 (© 2019, Wiley-VCH)[64]
Atom | Site | x | y | z | Occupancy | Uiso |
---|---|---|---|---|---|---|
Lia | 3a | 0 | 0 | 0 | 1.000 | 0.014(6) |
Coa | 3b | 0 | 0 | 0.50000 | 1.000 | 0.023(8) |
Oa | 6c | 0 | 0 | 0.2300(6) | 1.000 | 0.049(1) |
Lib | 3a | 0 | 0 | 0 | 0.98(1) | 0.020(1) |
Mgb | 3a | 0 | 0 | 0 | 0.01(9) | 0.020(1) |
Cob | 3b | 0 | 0 | 0.50000 | 0.99(7) | 0.001(2) |
Alb | 3b | 0 | 0 | 0.50000 | 0.002(0) | 0.001(2) |
Tib | 3b | 0 | 0 | 0.50000 | 0.001(0) | 0.001(2) |
Ob | 6c | 0 | 0 | 0.2476(3) | 1.000 | 0.068(5) |
Fig. 12 XRD Rietveld refinement results of Li(Li0.2Ni0.2Mn0.6)O2 cathode materials (© 2022, Wiley-VCH)[66] (a, b) Experimental XRD patterns and Rietveld refinement results of (a) LLNMO-PC and (b) LLNMO-SC; (c, d) Changes of lattice parameters (a, b, c, and V) for (c) LLNMO-PC and (d) LLNMO-SC electrodes during charge and discharge 1 Å=0.1 nm. Colorful figures are available on website
Formula | Calculated | Experimental | ||||
---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | a/nm | V/nm3 | |
Li8Mn16O32 | 0.886205 | 0.886205 | 0.886205 | 0.695990 | - | - |
Li8Mn15AlO32 | 0.826725 | 0.826725 | 0.826725 | 0.567617 | 0.82507 | 0.561658 |
Li8Mn14Al2O32 | 0.831493 | 0.831493 | 0.799071 | 0.552416 | 0.82466 | 0.560821 |
Li8Mn13Al3O32 | 0.814375 | 0.826337 | 0.820583 | 0.551780 | 0.82110 | 0.553590 |
Table 5 XRD structure refinement result of Al doped LiMn2O4 (© 2019, Elsevier Ltd.)[69]
Formula | Calculated | Experimental | ||||
---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | a/nm | V/nm3 | |
Li8Mn16O32 | 0.886205 | 0.886205 | 0.886205 | 0.695990 | - | - |
Li8Mn15AlO32 | 0.826725 | 0.826725 | 0.826725 | 0.567617 | 0.82507 | 0.561658 |
Li8Mn14Al2O32 | 0.831493 | 0.831493 | 0.799071 | 0.552416 | 0.82466 | 0.560821 |
Li8Mn13Al3O32 | 0.814375 | 0.826337 | 0.820583 | 0.551780 | 0.82110 | 0.553590 |
Fig. 13 Refined XRD patterns of multiphase materials (a) Li1.25Co0.25Mn0.50O2 (© 2018, Wiley-VCH)[70]; (b) LiMnPO4·Li3V2(PO4)3/C (© 2016, American Chemical Society)[71]
[1] | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议. 中国科学院院刊, 2022, 37(4):529. |
[2] |
TARASCON J, ARMAND M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861):359.
DOI URL |
[3] |
ZENG H, HANG F. Energy materials in new era. Journal of Inorganic Materials, 2022, 37(2):113.
DOI |
[4] |
ARMAND M, TARASCON J M. Building better batteries. Nature, 2008, 451(7179):652.
DOI |
[5] |
XIANG J, WEI Y, ZHONG Y, et al. Building practical high-voltage cathode materials for lithium-ion batteries. Advanced Materials, 2022, 34(52): 2200912.
DOI URL |
[6] |
WANG L, QIU J, WANG X, et al. Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience, 2022, 2(2):125.
DOI URL |
[7] |
ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nature Energy, 2018, 3(5):373.
DOI |
[8] |
CHEN Z, ZHANG W, YANG Z. A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations. Nanotechnology, 2020, 31(1):012001.
DOI URL |
[9] |
SINGH J P, PAIDI A K, CHAE K H, et al. Synchrotron radiation based X-ray techniques for analysis of cathodes in Li rechargeable batteries. RSC Advance, 2022, 12(31):20360.
DOI URL |
[10] |
RIETVELD H. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica, 1967, 22(1):151.
DOI URL |
[11] | BRAGG W L. The structure of some crystals as indicated by their diffraction of X-rays. Proceedings of the Royal Society of London A, 1913, 89(610):248. |
[12] | CULLITY B D. Elements of X-ray diffraction. Boston: Addison- Wesley Publishing Company, 1978:102. |
[13] | HULBERT S L, WILLIAMS G P. 1. Synchrotron Radiation Sources. In: SAMSON J A R, EDERER D L. Experimental Methods in the Physical Sciences. Salt Lake City: Academic Press, 1998:1-25. |
[14] |
MORCRETTE M, CHABRE Y, VAUGHAN G, et al. In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials. Electrochemica Acta, 2002, 47(19):3137.
DOI URL |
[15] |
HUANG N, DENG H, LIU B, et al. Features and futures of X-ray free-electron lasers. The Innovation, 2021, 2(2):100097.
DOI URL |
[16] | ISHIKAWA T. Accelerator-based X-ray sources: synchrotron radiation, X-ray free electron lasers and beyond. Philosophical Transactions of the Royal Society A, 2019, 377(2147):20180231. |
[17] | WELZEL U, MITTEMEIJER E J. Laboratory Instrumentation for X-Ray Powder Diffraction:Developments and Examples// MITTEMEIJER E J, WELZEL U. Modern Diffraction Methods. San Francisco: John Wiley and Sons, 2012:359-398. |
[18] |
DAHN J R, HAERING R R. Anomalous Bragg peak widths in LixTiS2. Solid State Communications, 1981, 40(3):245.
DOI URL |
[19] |
XIA M, LIU T, PENG N, et al. Lab-scale in situ X-ray diffraction technique for different battery systems: designs, applications, and perspectives. Small Methods, 2019, 3(7):1900119.
DOI URL |
[20] |
LLEWELLYN A V, MATRUGLIO A, BRETT D J L, et al. Using in-situ laboratory and synchrotron-based X-ray diffraction for lithium-ion batteries characterization: a review on recent developments. Condensed Matter, 2020, 5(4):75.
DOI URL |
[21] |
MUHAMMAD S, LEE S, KIM H, et al. Deciphering the thermal behavior of lithium rich cathode material by in situ X-ray diffraction technique. Journal of Power Sources, 2015, 285:156.
DOI URL |
[22] |
MCCUSKER L B, VON DREELE R B, COX D E, et al. Rietveld refinement guidelines. Journal of Applied Crystallography, 1999, 32(1):36.
DOI URL |
[23] | YOUNG R A. The Rietveld method. New York: Oxford University Press, 1993: 1. |
[24] |
THOMAS M G S R, BRUCE P G, GOODENOUGH J B. AC impedance analysis of polycrystalline insertion electrodes: application to Li1-xCoO2. Journal of The Electrochemical Society, 1985, 132(7):1521.
DOI |
[25] | ASTUTI F, MAGHFIROHTUZZOIMAH V L, INTIFADHAH S H, et al. Local structure and electronic structure of LiFePO4 as a cathode for lithium-ion batteries. Journal of Physics: Conference Series, 2021, 1951(1): 012007. |
[26] |
YU F, WANG Y, GUO C, et al. Spinel LiMn2O4 cathode materials in wide voltage window: single-crystalline versus polycrystalline. Crystals, 2022, 12(3):317.
DOI URL |
[27] |
LÜ Y, HUANG S, ZHAO Y, et al. A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects. Applied Energy, 2022, 305:117849.
DOI URL |
[28] |
NIE L, CHEN S, LIU W. Challenges and strategies of lithium-rich layered oxides for Li-ion batteries. Nano Research, 2023, 16:391.
DOI |
[29] |
PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of The Electrochemical Society, 1997, 144(4):1188.
DOI |
[30] | RADZI Z I, ARIFIN K H, KUFIAN M Z, et al. Review of spinel LiMn2O4 cathode materials under high cut-off voltage in lithium-ion batteries: challenges and strategies. Journal of Electroanalytical Chemistry, 2022, 920: 116623. |
[31] |
THACKERAY M M.Exploiting the spinel structure for Li-ion battery applications: a tribute to John B. Goodenough. Advanced Energy Materials, 2021, 11(2):2001117.
DOI URL |
[32] |
GRENIER A, REEVES P J, LIU H, et al. Intrinsic kinetic limitations in substituted lithium-layered transition-metal oxide electrodes. Journal of the American Chemical Society, 2020, 142(15):7001.
DOI PMID |
[33] |
LIU J, WANG J, NI Y, et al. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Materials Today, 2021, 43:132.
DOI URL |
[34] |
YOON C S, PARK K J, KIM U H, et al. High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chemistry of Materials, 2017, 29(24):10436.
DOI URL |
[35] | 朱先军, 詹晖, 周运鸿. LiNi0.85Co0.15O2合成和结构与电化学性能关系. 化学学报, 2002, 10(60):1742. |
[36] |
NI L, GUO R, FANG S, et al. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. eScience, 2022, 2(1):116.
DOI URL |
[37] |
HUA W, YANG X, CASATI N P M, et al. Probing thermally- induced structural evolution during the synthesis of layered Li-, Na-, or K-containing 3D transition-metal oxides. eScience, 2022, 2(2):183.
DOI URL |
[38] |
ZHAO S, YAN K, ZHANG J, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angewandte Chemie International Edition, 2021, 60(5): 2208.
DOI URL |
[39] | YE Z, QIU L, YANG W, et al. Nickel-rich layered cathode materials for lithium-ion batteries. Chemistry, 2021, 27(13):4249. |
[40] |
ZHENG J, YE Y, LIU T, et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Accounts of Chemical Research, 2019, 52(8): 2201.
DOI PMID |
[41] |
ZHAO J, ZHANG W, HUQ A, et al. In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes. Advanced Energy Materials, 2017, 7(3):1601266.
DOI URL |
[42] |
WEBER R, LI H, CHEN W, et al. In situ XRD studies during synthesis of single-crystal LiNiO2, LiNi0.975Mg0.025O2, and LiNi0.95Al0.05O2 cathode materials. Journal of the Electrochemical Society, 2020, 167(10):100501.
DOI |
[43] |
WANG S, HUA W, MISSYUL A, et al. Kinetic control of long- range cationic ordering in the synthesis of layered Ni-rich oxides. Advanced Functional Materials, 2021, 31(19):2009949.
DOI URL |
[44] |
ZHANG M J, DUAN Y, YIN C, et al. Ultrafast solid-liquid intercalation enabled by targeted microwave energy delivery. Science Advances, 2020, 6(51):eabd9472.
DOI URL |
[45] |
LEE E J, CHEN Z, NOH H J, et al. Development of microstrain in aged lithium transition metal oxides. Nano Letters, 2014, 14(8):4873.
DOI URL |
[46] |
XU C, MARKER K, LEE J, et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nature Materials, 2021, 20(1):84.
DOI |
[47] |
PUSHNITSA K A, KIM A E, POPOVICH A A, et al. Structural transformation of LiNi0.8Co0.1Mn0.1O2 cathode material during cycling with overcharge investigated by in situ X-ray diffraction. Journal of Electronic Materials, 2019, 48(10):6694.
DOI |
[48] |
DE BIASI L, SCHIELE A, ROCA-AYATS M, et al. Phase transformation behavior and stability of LiNiO2 cathode material for Li-ion batteries obtained from in situ gas analysis and operando X-ray diffraction. ChemSusChem, 2019, 12(10):2240.
DOI URL |
[49] |
LI J, DOWNIE L E, MA L, et al. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries. Journal of the Electrochemical Society, 2015, 162(7):A1401.
DOI URL |
[50] |
LIU J, WU Z, YU M, et al. Building homogenous Li2TiO3 coating layer on primary particles to stabilize Li-rich Mn-based cathode materials. Small, 2022, 18(10):2106337.
DOI URL |
[51] |
LIU T, LIU J, LI L, et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature, 2022, 606(7913):305.
DOI |
[52] |
ZHANG S, CHEN J, TANG T, et al. A novel strategy to significantly enhance the initial voltage and suppress voltage fading of a Li-and Mn-rich layered oxide cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6(8):3610.
DOI URL |
[53] |
CHERNYAVSKY V, KIM A, KOSHTYAL Y, et al. Structural features of complete and partial activation of Li-rich cathodes studied by in-situ XRD. Electrochemica Acta, 2022, 414:140237.
DOI URL |
[54] |
WANG L, LIU T, DAI A, et al. Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nature Communications, 2021, 12(1):5370.
DOI PMID |
[55] |
YANG Z, CHARALAMBOUS H, LIN Y, et al. Extreme fast charge aging: correlation between electrode scale and heterogeneous degradation in Ni-rich layered cathodes. Journal of Power Sources, 2022, 521:230961.
DOI URL |
[56] | SU Y, CHEN G, CHEN L, et al. High-rate structure-gradient Ni- rich cathode material for lithium-ion batteries. ACS Applied Materials & Interfaces, 2019, 11(40):36697. |
[57] |
QUILTY C D, WEST P J, WHEELER G P, et al. Elucidating cathode degradation mechanisms in LiNi0.8Mn0.1Co0.1O2 (NMC811)/ graphite cells under fast charge rates using operando synchrotron characterization. Journal of the Electrochemical Society, 2022, 169(2):020545.
DOI |
[58] |
LÜ C, LI Z, REN X, et al. Revealing the degradation mechanism of Ni-rich cathode materials after ambient storage and related regeneration method. Journal of Materials Chemistry A, 2021, 9(7):3995.
DOI URL |
[59] |
BLYR A, PASQUIER A D, AMATUCCI G, et al. Origin of self- discharge mechanism in LiMn2O4-based Li-ion cells: a chemical and electrochemical approach. Ionics, 1997, 3:321.
DOI URL |
[60] | ZHANG C, SU J, WANG T, et al. Significant improvement on electrochemical performance of LiMn2O4 at elevated temperature by atomic layer deposition of TiO2 nanocoating. ACS Sustainable Chemistry & Engineering, 2018, 6(6):7890. |
[61] |
TANG X, ZHOU J, BAI M, et al. Investigation of the self- discharge behaviors of the LiMn2O4 cathode at elevated temperatures: in situ X-ray diffraction analysis and a co-doping mitigation strategy. Journal of Materials Chemistry A, 2019, 7(21):13364.
DOI URL |
[62] |
YANG M R, KE W H. The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M=Mg2+, Ni2+, Al3+, or V3+ ) as cathode materials for lithium-ion cells. Journal of the Electrochemical Society, 2008, 155(10):A729.
DOI URL |
[63] |
WANG H, LAI A, HUANG D, et al. Y-F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries. New Journal of Chemistry, 2021, 45(12):5695.
DOI URL |
[64] |
WANG L, MA J, WANG C, et al. A novel bifunctional self- stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Advanced Science, 2019, 6(12): 1900355.
DOI URL |
[65] |
GE M, WI S, LIU X, et al. Kinetic limitations in single-crystal high-nickel cathodes. Angewandte Chemie International Edition, 2021, 60(32):17350.
DOI URL |
[66] |
YANG X, WANG S, HAN D, et al. Structural origin of suppressed voltage decay in single-crystalline Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 Cathodes. Small, 2022, 18(25):2201522.
DOI URL |
[67] | TAN Z, LI Y, XI X, et al. Lattice engineering to refine particles and strengthen bonds of the LiNi0.9Co0.05Mn0.05O2 cathode toward efficient lithium ion storage. ACS Sustainable Chemistry & Engineering, 2022, 10(11):3532. |
[68] |
ZHANG Y, LIU J, XU W, et al. Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2022, 535:231445.
DOI URL |
[69] |
CAI Z, MA Y, HUANG X, et al. High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries. Journal of Energy Storage, 2020, 27:101036.
DOI URL |
[70] |
ZUO Y, LI B, JIANG N, et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Advanced Materials, 2018, 30(16):1707255.
DOI URL |
[71] | CAO X, PAN A, ZHANG Y, et al. Nanorod-nanoflake interconnected LiMnPO4·Li3V2(PO4)3/C composite for high-rate and long-life lithium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(41):27632. |
[72] |
LU J, CAO B, HU B, et al. Heavy fluorination via ion exchange achieves high-performance Li-Mn-O-F layered cathode for Li-ion batteries. Small, 2022, 18(6):2103499.
DOI URL |
[73] | HATSUI T, GRAAFSMA H. X-ray imaging detectors for synchrotron and XFEL sources. IUCrJ, 2015, 2(3):37 |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[15] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||