Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (9): 1003-1008.DOI: 10.15541/jim20140165
• Orginal Article • Previous Articles
WANG He-Yun1,2, LIU Qian1, ZHOU Yao1,2, ZHOU Zhen-Zhen1, LIU Guang-Hui1
Received:
2014-04-02
Published:
2014-09-17
Online:
2014-08-21
Supported by:
WANG He-Yun, LIU Qian, ZHOU Yao, ZHOU Zhen-Zhen, LIU Guang-Hui. Preparation and Properties of Carbon Fiber/Si3N4 Composites[J]. Journal of Inorganic Materials, 2014, 29(9): 1003-1008.
Fig. 3 SEM and optical microscopy images of Cf/Si3N4 Secondary electron image (SEI) of fracture surfaces of SN-Cf-0 (a) and SN-Cf-5 (b), back scattered electron image (BSEI) of fracture surface of SN-Cf-5 (c), and optical microscopy image of SN-Cf-5 surface (d)
Composites | Cf/ wt% | ρ/ (g?cm-3) | Cp/ (mm2?s-1) | α/ (J?g-1?K-1) | k/ (W?m-1?K-1) |
---|---|---|---|---|---|
SN-Cf-0 | 0 | 3.27 | 17.98 | 0.59 | 37.12 |
SN-Cf-2 | 2 | 3.31 | 19.99 | 0.61 | 45.84 |
SN-Cf-5 | 5 | 3.28 | 15.12 | 0.58 | 33.43 |
Table 1 Thermal properties of Cf/Si3N4 composites measured at room temperature
Composites | Cf/ wt% | ρ/ (g?cm-3) | Cp/ (mm2?s-1) | α/ (J?g-1?K-1) | k/ (W?m-1?K-1) |
---|---|---|---|---|---|
SN-Cf-0 | 0 | 3.27 | 17.98 | 0.59 | 37.12 |
SN-Cf-2 | 2 | 3.31 | 19.99 | 0.61 | 45.84 |
SN-Cf-5 | 5 | 3.28 | 15.12 | 0.58 | 33.43 |
Composites | Cf /wt% | Hv/GPa | KIC/(MPa?m1/2) |
---|---|---|---|
SN-Cf-0 | 0 | 16.6 | 5.0 |
SN-Cf-2 | 2 | 16.8 | 4.9 |
SN-Cf-5 | 5 | 16.8 | 5.3 |
Table 2 Mechanical property of Cf/Si3N4 composites measured at room temperature
Composites | Cf /wt% | Hv/GPa | KIC/(MPa?m1/2) |
---|---|---|---|
SN-Cf-0 | 0 | 16.6 | 5.0 |
SN-Cf-2 | 2 | 16.8 | 4.9 |
SN-Cf-5 | 5 | 16.8 | 5.3 |
[1] | KRSTIC ZORAN, KRSTIC D. VLADIMIR. Silicon nitride: the engineering material of the future. Journal of Materials Science, 2011, 47(2): 535-552. |
[2] | WATARI KOJI. High thermal conductivity non-oxide ceramics. Journal of the Ceramic Society of Japan, 2001, 109(1): S7-S16. |
[3] | PENG MENG-MENG, NING XIAO-SHAN. Sintering of β-Si3N4 powder and thermal conductivity of the ceramic. Rare Metal Materials and Engineering, 2013, 42(1): 405-408. |
[4] | ZHANG YING-WEI, YU JIAN-BO, XIA YONG-FENG, et al. Microstructure and mechanical performance of silicon nitride ceramic with seeds addition. Journal of Inorganic Materials, 2012, 27(8): 807-812. |
[5] | ZHU XIN-WEN, ZHOU YOU, HIRAO KIYOSHI. Effects of processing method and additive composition on microstructure and thermal conductivity of Si3N4 ceramics. Journal of the European Ceramic Society, 2006, 26: 711-718. |
[6] | ZHU XIN-WEN, ZHOU YOU, HIRAO KIYOSHI. Post-densification behavior of reaction-bonded silicon nitride (RBSN): effect of various characteristics of RBSN. Journal of Materials Science, 2004, 39(18): 5785-5797. |
[7] | WARARI KOJI, HIRAO KIYOSHI, BRITO E MANUEL, et al. Hot isostatic pressing to increase thermal conductivity of Si3N4 ceramics. Journal of Materials Research, 1998, 14(4): 1538-1551. |
[8] | WATARI KOJI, HIRSO KIYOSHI, TORIYAMA MOTOHIRO. Effect of grain size on the thermal conductivity of Si3N4. Journal of the American Ceramic Society, 1999, 82(3): 777-779. |
[9] | ZHOU YOU, HYUGA HIDEKI, KUSANO DAI, et al. A tough silicon nitride ceramic with high thermal conductivity. Advanced Materials, 2011, 23(39): 4563-4567. |
[10] | CHOI Stephen U S, ZHANG Z G, YU W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 2001, 79(14): 2252-2254. |
[11] | HAN SEUNGJIN, CHUNG D D L. Increasing thethrough-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation. Composites Science and Technology, 2011, 71(16): 1944-1952. |
[12] | BORRELL B, ROCHA V G, TORRECILLAS R, et al. Effect of carbon nanofibers content on thermal properties of ceramic nanocomposites. Journal of Composite Materials, 2011, 46(10): 1229-1234. |
[13] | YAO DONG-XU, XIA YONG-FENG, ZOU KAI-HUI, et al. Porous Si3N4 ceramics prepared via partial nitridation and SHS. Journal of the European Ceramic Society, 2013, 33(2): 371-374. |
[14] | YANG JIAN-FENG, ZHANG GUO-JUN, KONDO NAOKI, et al. Synthesis and properties of porous Si3N4/SiC nanocomposites by carbothermal reaction between Si3N4 and carbon. Acta Materialia, 2002, 50(19): 4831-4840. |
[15] | WANG XIAO-YAN, ZHU DONG-MEI, LI PENG, et al. Behavior of short carbon fibers in Cfiber/Si3N4 composites by hot pressed sintering. Journal of Reinforced Plastics and Composites, 2009, 28(2): 167-173. |
[16] | MAGNANT J, PAILLER R, PETITCORPS Y L, et al. Fiber-reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering. Journal of the European Ceramic Society, 2013, 33(1): 181-190. |
[17] | YANG JIAN-FENG, ZHANG GUO-JUN, KONDO NAOKI, et al. Porous 2H-silicon carbide ceramics fabricated by carbothermal reaction between silicon nitride and carbon. Journal of the American Ceramic Society, 2003, 86(6): 910-914. |
[18] | CHOI JAE-YOUNG, KIM CHONG-HEE, KIM DO-KYUNG, et al. Carbothermic synthesis of monodispersed spherical Si3N4/SiC nanocomposite powder. Journal of the American Ceramic Society, 1999, 82(10): 2665-2671. |
[19] | ELIMAT Z M, HUSSAIN W T, ZIHLIF A M. PAN-based carbon fibers/PMMA composites: thermal, dielectric, and DC electrical properties. Journal of Materials Science: Materials in Electronics, 2012, 23(12): 2117-2122. |
[20] | KUMARI L, ZHANG T, DU G H, et al. Thermal properties of CNT-alumina nanocomposites. Composites Science and Technology, 2008, 68(9): 2178-2183. |
[21] | BAKSHI SRINIVAS R, BALANI KANTESH, AGARWAL ARVIND. Thermal conductivity of plasma-sprayed aluminum oxide-multiwalled carbon nanotube composites. Journal of the American Ceramic Society, 2008, 91(3): 942-947. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | JIN Min, MA Yupeng, WEI Tianran, LIN Siqi, BAI Xudong, SHI Xun, LIU Xuechao. Growth and Characterization of Large-size InSe Crystal from Non-stoichiometric Solution via a Zone Melting Method [J]. Journal of Inorganic Materials, 2024, 39(5): 554-560. |
[10] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[11] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[12] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[13] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[14] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[15] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||