无机材料学报 ›› 2024, Vol. 39 ›› Issue (12): 1339-1347.DOI: 10.15541/jim20240191 CSTR: 32189.14.10.15541/jim20240191
所属专题: 【能源环境】钙钛矿(202412); 【能源环境】太阳能电池(202412)
王煜1,2(), 熊浩2, 黄孝坤3, 江琳沁2(
), 吴波1(
), 黎健生3, 杨爱军3
收稿日期:
2024-04-15
修回日期:
2024-07-10
出版日期:
2024-07-26
网络出版日期:
2024-07-26
通讯作者:
江琳沁, 教授. E-mail: linqinjiang@fjjxu.edu.cn;作者简介:
王 煜(1999-), 男, 硕士研究生. E-mail: 719351445@qq.com
基金资助:
WANG Yu1,2(), XIONG Hao2, HUANG Xiaokun3, JIANG Linqin2(
), WU Bo1(
), LI Jiansheng3, YANG Aijun3
Received:
2024-04-15
Revised:
2024-07-10
Published:
2024-07-26
Online:
2024-07-26
Contact:
JIANG Linqin, professor. E-mail: linqinjiang@fjjxu.edu.cn;About author:
WANG Yu (1999-), male, Master candidate. E-mail: 719351445@qq.com
Supported by:
摘要:
锡铅(Sn-Pb)混合钙钛矿在制备过程中常使用大量的氟化亚锡(SnF2)添加剂来抑制Sn2+离子的氧化, 然而SnF2过量会影响薄膜质量、器件的光电转化效率(PCE)和稳定性。因此, 开发低剂量的新型抗氧化剂对于实现高性能Sn-Pb混合钙钛矿电池至关重要。本研究采用两步法制备Sn-Pb混合钙钛矿薄膜, 在第一步中引入较低剂量的异辛酸亚锡(SnOct2)替代SnF2来抑制Sn2+的氧化。研究表明该添加剂可提高薄膜的结晶质量, 使得薄膜平均晶粒尺寸达到850 nm, 并且晶界数量减少。添加SnOct2的薄膜在手套箱存放7 d后仍含有93.5%的Sn2+, 且由于SnOct2具有优异的抗氧化性, 使得添加SnOct2后器件的陷阱态密度更低, 从7.20×1015 cm-3降低到4.74×1015 cm-3, 抑制了非辐射复合。除此之外, SnOct2还改善了钙钛矿薄膜的表面能级。最终, 添加0.030 mmol SnOct2的Sn-Pb混合钙钛矿电池的PCE达到17.25%, 较添加0.10 mmol SnF2的器件(11.63%)有显著提高; 且在氮气中保存50 d后, PCE仍保存其初始值的70%以上。
中图分类号:
王煜, 熊浩, 黄孝坤, 江琳沁, 吴波, 黎健生, 杨爱军. 低剂量异辛酸亚锡调控两步法制备Sn-Pb混合钙钛矿太阳能电池[J]. 无机材料学报, 2024, 39(12): 1339-1347.
WANG Yu, XIONG Hao, HUANG Xiaokun, JIANG Linqin, WU Bo, LI Jiansheng, YANG Aijun. Regulation of Low-dose Stannous Iso-octanoate for Two-step Prepared Sn-Pb Alloyed Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2024, 39(12): 1339-1347.
图3 PVK-0.10SF薄膜与PVK-0.030SO薄膜的XPS谱图
Fig. 3 XPS spectra of PVK-0.10SF and PVK-0.030SO films (a) Sn3d; (b) I3d; Sn4+/Sn2+ ratios of (c) PVK-0.10SF and (d) PVK-0.030SO perovskite films
图4 不同Sn-Pb混合钙钛矿薄膜的光学性能与能级
Fig. 4 Optical properties and energy levels of different Sn-Pb alloyed perovskite films (a) UV-VIS-NIR spectra; (b) UPS spectra; (c) Tauc plots; (d) Energy levels of VBM, CBM, and Fermi derived from the UPS spectra
图5 PSC-0.10SF与PSC-0.030SO器件的光伏性能与稳定性
Fig. 5 Photovoltaic performance and stability of PSC-0.10SF and PSC-0.030SO devices (a) Structure diagram of Sn-Pb alloyed perovskite solar cell; (b) J-V curves of the best-performance PSCs fabricated with SnF2 and SnOct2; (c) Stability of unencapsulated PSCs stored in the N2 glove box for 50 d; (d) Stability of unencapsulated PSCs stored in air for 20 d
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
PSC-0.10SF | 0.628±0.021 | 23.17±2.24 | 73.76±4.77 | 10.73±0.89 |
PSC-0.015SO | 0.698±0.004 | 26.45±0.66 | 75.03±3.05 | 13.86±0.48 |
PSC-0.030SO | 0.728±0.009 | 28.64±0.58 | 80.83±0.57 | 16.86±0.38 |
PSC-0.045SO | 0.701±0.011 | 27.67±0.79 | 77.34±2.59 | 15.01±0.73 |
表S1 不同添加剂制备的10个Sn-Pb混合PSC器件的参数统计
Table S1 Average parameters of 10 Sn-Pb alloyed PSC devices with different additive
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
PSC-0.10SF | 0.628±0.021 | 23.17±2.24 | 73.76±4.77 | 10.73±0.89 |
PSC-0.015SO | 0.698±0.004 | 26.45±0.66 | 75.03±3.05 | 13.86±0.48 |
PSC-0.030SO | 0.728±0.009 | 28.64±0.58 | 80.83±0.57 | 16.86±0.38 |
PSC-0.045SO | 0.701±0.011 | 27.67±0.79 | 77.34±2.59 | 15.01±0.73 |
图S5 不同Sn-Pb混合钙钛矿薄膜的内部缺陷
Fig. S5 Internal defects of different Sn-Pb alloyed perovskite films (a, b) I-V curves of FTO/SnO2/FAxMA1-xPb0.7Sn0.3InBr1-n/PCBM/Ag; (c) EIS plots; (d) Leakage current diagram
[1] | CHUNG I, LEE B, HE J, et al. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399):486. |
[2] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(170):6050.
DOI PMID |
[3] | SNAITH H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. The Journal of Physical Chemistry Letters, 2013, 4(21):3623. |
[4] |
GRÄTZEL M. The light and shade of perovskite solar cells. Nature Materials, 2014, 13(9):838.
DOI PMID |
[5] | LIANG Z, ZHANG Y, XU H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624(7992):557. |
[6] | LIAO W, ZHAO D, YU Y, et al. Fabrication of efficient low bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. Journal of the American Chemical Society, 2016, 138(38):12360. |
[7] | HU S, OTSUKA K, MURDEY R, et al. Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells. Energy and Environmental Science, 2022, 15: 2096. |
[8] | LIN R, XU J, WEI M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603(7899):73. |
[9] |
LIU C, FAN J, LI H, et al. Highly efficient perovskite solar cells with substantial reduction of lead content. Scientific Reports, 2016, 6(1):35705.
DOI PMID |
[10] | ZHU L, YUH B, SCHOEN S, et al. Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells. Nanoscale, 2016, 8(14):7621. |
[11] | LIAN X, CHEN J, ZHANG Y, et al. Highly efficient Sn/Pb binary perovskite solar cell via precursor engineering: a two-step fabrication process. Advanced Functional Materials, 2019, 29(5):1807024. |
[12] | ZHU T, YANG Y, GONG X. Recent advancements and challenges for low-toxicity perovskite materials. ACS Applied Materials & Interfaces, 2020, 12(24):26776. |
[13] | YANG Z, RAJAGOPAL A, CHUEH C C, et al. Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells. Advanced Materials, 2016, 28(40):8990. |
[14] | SONG T B, YOKOYAMA T, STOUMPOS C C, et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. Journal of the American Chemical Society, 2017, 139(2):836. |
[15] |
KE W, KANATZIDIS M G. Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 2019, 10(1):965.
DOI PMID |
[16] | LEE S J, SHIN S S, KIM Y C, et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. Journal of the American Chemical Society, 2016, 138(12):3974. |
[17] | YU B B, XU L, LIAO M, et al. Synergy effect of both 2, 2, 2-trifluoroethylamine hydrochloride and SnF2 for highly stable FASnI3-xClx perovskite solar cells. Solar RRL, 2019, 3(3):1800290. |
[18] | XIAO M, GU S, ZHU P, et al. Tin-based perovskite with improved coverage and crystallinity through tin-fluoride-assisted heterogeneous nucleation. Advanced Optical Materials, 2018, 6(1):1700615. |
[19] | WANG F, JIANG X, CHEN H, et al. 2D-Quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule, 2018, 2(12):2732. |
[20] | CAO D H, STOUMPOS C C, YOKOYAMA T, et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites. ACS Energy Letters, 2017, 2(5):982. |
[21] | ZHAO Z, GU F, WANG C, et al. Orientation regulation of photoactive layer in tin-based perovskite solar cells with allylammonium cations. Solar RRL, 2020, 4(10):2000315. |
[22] | DAI X, ZHANG L, QIAN Y, et al. Controlling vertical composition gradients in Sn-Pb mixed perovskite solar cells via solvent engineering. Journal of Inorganic Materials, 2023, 38(9):1089. |
[23] | TAI Q, GUO X, TANG G, et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angewandte Chemie International Edition, 2019, 58(3):806. |
[24] | LIN Z, LIU C, LIU G, et al. Preparation of efficient inverted tin-based perovskite solar cells via the bidentate coordination effect of 8-hydroxyquinoline. Chemical Communications, 2020, 56(28):4007. |
[25] | MENG X, WU T, LIU X, et al. Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent. The Journal of Physical Chemistry Letters, 2020, 11(8):2965. |
[26] | MENG X, WANG Y, LIN J, et al. Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule, 2020, 4(4):902. |
[27] | MENG X, LIN J, LIU X, et al. Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding. Advanced Materials, 2019, 31(42):1903721. |
[28] | XU X, CHUEH C C, YANG Z, et al. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy, 2017, 34: 392. |
[29] | TONG J H, SONG Z N, KIM H D, et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364(6439):475. |
[30] | WANG J T, UDDIN M A, CHEN B, et al. Enhancing photostability of Sn-Pb perovskite solar cells by an alkylammonium pseudo-halogen additive. Advanced Energy Materials, 2023, 13(15):2204115. |
[31] | BING J, KIM J, ZHANG M, et al. The impact of a dynamic two- step solution process on film formation of Cs0.15(MA0.7FA0.3)0.85PbI3 perovskite and solar cell performance. Small, 2019, 15(9):1804858 |
[32] | WANG J, DATTA K, LI J, et al. Understanding the film formation kinetics of sequential deposited narrow-bandgap Pb-Sn hybrid perovskite films. Advanced Energy Materials, 2020, 10(22):2000566. |
[33] | LI S, ZHANG X, XUE X, et al. Importance of tin (II) acetate additives in sequential deposited fabrication of Sn-Pb-based perovskite solar cells. Journal of Alloys and Compounds, 2022, 904: 164050. |
[34] | OKU T. Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells. Solar Cells-New Approaches and Reviews, 2015, 1: 77. |
[35] | BAHRAM A N, MOSSAIN M, JAKOBY M, et al. Vacuum- assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Advanced Energy Materials, 2020, 10(5):1902583. |
[36] | MA Y, ZHENG F, LI S, et al. Regulating the crystallization growth of Sn-Pb mixed perovskites using the 2D perovskite (4-AMP) PbI4 substrate for high-efficiency and stable solar cells. ACS Applied Materials & Interfaces, 2023, 15(29):34862. |
[37] | FEI C, LI B, ZHANG R, et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Advanced Energy Materials, 2017, 7(9):1602017. |
[38] | LI C, ZHANG N, GAO P. Lessons learned: how to report XPS data incorrectly about lead-halide perovskites. Materials Chemistry Frontiers, 2023, 7(18):3797. |
[39] |
ZHANG Z, LIANG J, WANG J, et al. Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells. Nano-Micro Letters, 2022, 14(1):165.
DOI PMID |
[40] | SUN Y, YANG S, PANG Z, et al. Preferred film orientation to achieve stable and efficient Sn-Pb binary perovskite solar cells. ACS Applied Materials & Interfaces, 2021, 13(9):10822. |
[41] | ZHANG W, HUANG L, ZHENG W, et al. Revealing key factors of efficient narrow-bandgap mixed lead-tin perovskite solar cells via numerical simulations and experiments. Nano Energy, 2022, 96: 107078. |
[42] | RAOUI Y, EZ-ZAHRAOUY H, KAZIM S, et al. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: mechanistic insights. Journal of Energy Chemistry, 2021, 54: 822. |
[43] | DUIJINSTEE E, BALL J, CONE V, et al. Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Letters, 2020, 5(2):376. |
[44] | BUBE R. Trap density determination by space-charge-limited currents. Journal of Applied Physics, 1962, 33(5):1733. |
[45] | CAO J, LIU C K, PIRADI V, et al. Ultrathin self-assembly two-dimensional metal-organic framework films as hole transport layers in ideal-bandgap perovskite solar cells. ACS Energy Letters, 2022, 7(10):3362. |
[1] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[2] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[3] | 苗鑫, 闫世强, 韦金豆, 吴超, 樊文浩, 陈少平. Te基热电器件反常界面层生长行为及界面稳定性研究[J]. 无机材料学报, 2024, 39(8): 903-910. |
[4] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[5] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[6] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[7] | 杨博, 吕功煊, 马建泰. 镍铁氢氧化物-磷化钴复合电极电催化分解水研究[J]. 无机材料学报, 2024, 39(4): 374-382. |
[8] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[9] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[10] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. |
[11] | 刘锁兰, 栾福园, 吴子华, 寿春晖, 谢华清, 杨松旺. 原位生长钙钛矿太阳能电池共形氧化锡薄膜[J]. 无机材料学报, 2024, 39(12): 1397-1403. |
[12] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[13] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[14] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[15] | 代晓栋, 张露伟, 钱奕成, 任智鑫, 曹焕奇, 印寿根. 锡铅混合钙钛矿太阳能电池垂直组分梯度的溶剂工程调控[J]. 无机材料学报, 2023, 38(9): 1089-1096. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||