无机材料学报 ›› 2024, Vol. 39 ›› Issue (12): 1348-1356.DOI: 10.15541/jim20240172 CSTR: 32189.14.10.15541/jim20240172
所属专题: 【能源环境】氢能材料(202412)
肖文艳1,2(), 付艳1,2, 杨书镔1,2, 朱洁1,2, 程照阳2, 温小煦1,2, 唐嘉繁1,2, 于亮1,2, 张骞2(
)
收稿日期:
2024-04-08
修回日期:
2024-07-25
出版日期:
2024-09-02
网络出版日期:
2024-09-02
通讯作者:
张 骞, 副教授. E-mail: zhangqian@swpu.edu.cn作者简介:
肖文艳(1999-), 女, 硕士研究生. E-mail: xiao18780293769@163.com
基金资助:
XIAO Wenyan1,2(), FU Yan1,2, YANG Shubin1,2, ZHU Jie1,2, CHENG Zhaoyang2, WEN Xiaoxu1,2, TANG Jiafan1,2, YU Liang1,2, ZHANG Qian2(
)
Received:
2024-04-08
Revised:
2024-07-25
Published:
2024-09-02
Online:
2024-09-02
Contact:
ZHANG Qian, associate professor. E-mail: zhangqian@swpu.edu.cnAbout author:
Xiao Wenyan (1999-), female, Master candidate. E-mail: xiao18780293769@163.com
Supported by:
摘要:
为了解决现有的能源危机, 实现持续的海水电解, 需要设计高效的电催化剂来应对阳极析氧反应缓慢与氯离子(Cl-)腐蚀的问题。本研究在泡沫镍(NF)骨架上采用一步式水热法制备了一种具有独特纳米结构的改性Ce-FeHPi/NF电极。实验结果表明, Ce掺杂调节了FeHPi/NF的表面形貌, 形成了非晶型纳米球, 这不仅使催化层生长为致密紧实的纳米结构, 而且大幅提高了电极的活性表面积, 从而明显提高了电催化活性。此外, 磷酸基可有效排斥电极表面的Cl-, 增强其耐腐蚀性, 使其在海水中长期稳定运行。10%Ce-FeHPi/NF电极在碱性模拟海水(1 mol·L-1 KOH + 0.5 mol·L-1 NaCl)电解液中, 仅需要较低的过电位(296 mV)即可达到100 mA·cm-2的电流密度。在1 mol·L-1 KOH + 1 mol·L-1 NaCl电解液中, 10%Ce-FeHPi/NF电极在恒电位1.774 V(vs. RHE)下实现了超过130 h的稳定运行。本研究所制备的改性纳米结构材料有效提高了电极的析氧活性, 为海水电解阳极催化材料的发展提供了一条新的途径。
中图分类号:
肖文艳, 付艳, 杨书镔, 朱洁, 程照阳, 温小煦, 唐嘉繁, 于亮, 张骞. 自支撑非晶Ce-FeHPi/NF电极的电解海水性能研究[J]. 无机材料学报, 2024, 39(12): 1348-1356.
XIAO Wenyan, FU Yan, YANG Shubin, ZHU Jie, CHENG Zhaoyang, WEN Xiaoxu, TANG Jiafan, YU Liang, ZHANG Qian. Seawater Electrolysis Performance of Self-supported Amorphous Ce-FeHPi/NF Electrode[J]. Journal of Inorganic Materials, 2024, 39(12): 1348-1356.
图2 (a)FeHPi/NF、(b)5%Ce-FeHPi/NF、(c)15%Ce-FeHPi/NF和(d~f)10%Ce-FeHPi/NF的SEM照片
Fig. 2 SEM images of (a) FeHPi/NF, (b) 5%Ce-FeHPi/NF, (c) 15%Ce-FeHPi/NF, and (d-f) 10%Ce-FeHPi/NF
图3 (a)FeHPi/NF和(b)10%Ce-FeHPi/NF的氮气吸脱附曲线和孔径分布曲线
Fig. 3 Nitrogen adsorption/desorption curves and pore size distributions for (a) FeHPi/NF and (b) 10%Ce-FeHPi/NF
图7 Ce-FeHPi/NF在不同电解液中的(a, b)OER极化曲线、(c, d)过电位和(e, f)Tafel图谱
Fig. 7 (a, b) OER polarization curves, (c, d) overpotentials, and (e, f) Tafel plots of Ce-FeHPi/NF samples in different electrolytes (a, c, e) 1 mol·L-1 KOH; (b, d, f) 1 mol·L-1 KOH + 0.5 mol·L-1 NaCl; Colorful figures are available on website
Element | Weight/% |
---|---|
Fe | 1.0341 |
Ce | 0.2593 |
P | 2.8334 |
表S1 ICP-OES分析10%Ce-FeHPi/NF中Fe、P和Ce的含量
Table S1 Amounts of Fe, P and Ce in 10%Ce-FeHPi/NF determined by ICP-OES
Element | Weight/% |
---|---|
Fe | 1.0341 |
Ce | 0.2593 |
P | 2.8334 |
图S2 电极在不同电解液中的(a, b)OER极化曲线、(c, d)过电位和(e, f)Tafel图谱
Fig. S2 (a, b) OER polarization curves, (c, d) overpotentials, and (e, f) Tafel plots of electrodes in different electrolytes (a, c, e) 1 mol·L-1 KOH; (b, d, f) 1 mol·L-1 KOH + 0.5 mol·L-1 NaCl
图S3 在非法拉第反应区间不同扫描速率下的循环伏安曲线
Fig. S3 Cyclic voltammetric curves at different scanning rates in non-Faraday reaction intervals (a) FeHPi/NF; (b) 5%Ce-FeHPi/NF; (c) 10%Ce-FeHPi/NF; (d) 15%Ce-FeHPi/NF; 1 mol·L-1 KOH
图S5 10%Ce-FeHPi/NF(a)在不同电解液中的OER极化曲线、(b)在1 mol·L-1 KOH + 0.5 mol·L-1 NaCl中的恒电流阶跃图
Fig. S5 (a) OER polarization curves in different electrolytes, and (b) constant current step plot of 10%Ce-FeHPi/NF in 1 mol·L-1 KOH + 0.5 mol·L-1 NaCl
图S6 长期稳定性测试后电解液的余氯检测结果(1 mol·L-1 KOH + 1 mol·L-1 NaCl, E=1.774 V(vs. RHE), 130 h)
Fig. S6 Residual chlorine testing for the electrolyte after the long-term stability test (1 mol·L-1 KOH + 1 mol·L-1 NaCl, E=1.774 V(vs. RHE), 130 h)
图S7 10%Ce-FeHPi/NF的法拉第效率测试
Fig. S7 Faraday efficiency test of 10%Ce-FeHPi/NF (a) Schematic diagram of testing equipment; (b) Faraday efficiency results
图S8 10%Ce-FeHPi/NF长时间反应后的(a~e)XPS谱图和(f)SEM照片
Fig. S8 (a-e) XPS spectra and (f) SEM image of 10%Ce-FeHPi/NF after long reaction (a) Full spectra; (b) Fe2p; (c) Ce3d; (d) P2p; (e) O1s
[1] | YANG L, LIU Z, ZHU S, et al. Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Materials Today Physics, 2021, 16: 100292. |
[2] | ZHOU Q, LIAO L, BIAN Q, et al. Engineering in-plane nickel phosphide heterointerfaces with interfacial sp H-P hybridization for highly efficient and durable hydrogen evolution at 2 A·cm-2. Small, 2022, 18(4):2105642. |
[3] |
MO Y, LIAO L, LI D, et al. Development prospects of metal-based two-dimensional nanomaterials in lithium-sulfur batteries. Chinese Chemical Letters, 2023, 34(1):107130.
DOI |
[4] | AN P, YANG B, ZHANG N, et al. Hybrid TaON/LaTiO2N photoelectrode for water oxidation. Transportation Safety and Environment, 2019, 1(3):212. |
[5] | WAN X, ZHAO Y, LI Z, et al. Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration, 2022, 2(1):20210029. |
[6] |
JIANG L L, XU S S, XIA B K, et al. Defect engineering of graphene hybrid catalysts for oxygen reduction reactions. Journal of Inorganic Materials, 2022, 37(2):215.
DOI |
[7] |
ZHAO Z, CHENG G, ZHANG Y, et al. Metal-organic-framework based functional materials for uranium recovery: performance optimization and structure/functionality-activity relationships. ChemPlusChem, 2021, 86(8):1177.
DOI PMID |
[8] |
TURNER J A. Sustainable hydrogen production. Science, 2004, 305(5686):972.
DOI PMID |
[9] | RASHID M M, AL MESFER M K, NASEEM H, et al. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high-temperature water electrolysis. International Journal of Engineering and Advanced Technology, 2015, 4(3):80. |
[10] | STIBER S, SATA N, MORAWIETZ T, et al. A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components. Energy & Environmental Science, 2022, 15(1):109. |
[11] | CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013, 38(12):4901. |
[12] | CHAE K J, CHOI M, AJAYI F F, et al. Mass transport through a proton exchange membrane (nafion) in microbial fuel cells. Energy & Fuels, 2008, 22(1):80. |
[13] |
MAURITZ K A, MOORE R B. State of understanding of nafion. Chemical Reviews, 2004, 104(10):4535.
DOI PMID |
[14] | LAGUNA-BERCERO M A. Recent advances in high-temperature electrolysis using solid oxide fuel cells: a review. Journal of Power Sources, 2012, 203: 4. |
[15] | KUPKA J, BUDNIOK A. Electrolytic oxygen evolution on Ni- Co-P alloys. Journal of Applied Electrochemistry, 1990, 20(6):1015. |
[16] | GUANG H L, ZHU S L, LIANG Y Q, et al. Highly efficient nanoporous CoBP electrocatalyst for hydrogen evolution reaction. Rare Metals, 2021, 40(5):1031. |
[17] | WANG C, SHANG H, JIN L, et al. Advances in hydrogen production from electrocatalytic seawater splitting. Nanoscale, 2021, 13(17):7897. |
[18] |
蒋博龙, 崔艳艳, 史顺杰, 等. 双金属氮化物NiMoN析氢催化剂制备及其电解海水析氢性能的研究. 化学学报, 2022, 80(10):1394.
DOI |
[19] | CONG Y, CHEN X, MEI Y, et al. CeO2 decorated bimetallic phosphide nanowire arrays for enhanced oxygen evolution reaction electrocatalysis via interface engineering. Dalton Transactions, 2022, 51(7):2923. |
[20] | YANG J, WANG Y, YANG J, et al. Quench-induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires. Small, 2022, 18(3):2106187. |
[21] |
QIU Y, LI W, ZHAO W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Letters, 2014, 14(8):4821.
DOI PMID |
[22] | UL HAQ T, MANSOUR S, HAIK Y. Electronic and structural modification of Mn3O4 nanosheets for selective and sustained seawater oxidation. ACS Applied Materials & Interfaces, 2022, 14(18):20443. |
[23] | ZHANG L, ZHANG R, GE R, et al. Facilitating active species generation by amorphous NiFe-Bi layer formation on NiFe-LDH nanoarray for efficient electrocatalytic oxygen evolution at alkaline pH. Chemistry — A European Journal, 2017, 23(48):11499. |
[24] | LI P, ZHAO S, HUANG Y, et al. Corrosion resistant multilayered electrode comprising Ni3N nanoarray overcoated with NiFe-phytate complex for boosted oxygen evolution in seawater electrolysis. Advanced Energy Materials, 2024, 14(8):2303360. |
[25] | SONG S, WANG Y, ZHOU S, et al. One-step synthesis of heterostructural MoS2-(FeNi)9S8 on Ni-Fe foam synergistically boosting for efficient fresh/seawater electrolysis. ACS Applied Energy Materials, 2022, 5(2): 1810. |
[26] | SONG S, WANG Y, LIU X, et al. Synthesis of Mo-doped NiFe- phosphate hollow bird-nest architecture for efficient and stable seawater electrolysis. Applied Surface Science, 2022, 604: 154588. |
[27] | SUN H, SUN J, SONG Y, et al. Nickel-cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis. ACS Applied Materials & Interfaces, 2022, 14(19):22061. |
[28] | SONG S, ZANG J, ZHOU S, et al. Self-supported amorphous nickel-iron phosphorusoxides hollow spheres on Ni-Fe foam for highly efficient overall water splitting. Electrochimica Acta, 2021, 392: 138996. |
[29] | WU L, YU L, ZHANG F, et al. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Advanced Functional Materials, 2021, 31(1):2006484. |
[30] | LI M, PAN X, JIANG M, et al. Interface engineering of oxygen- vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chemical Engineering Journal, 2020, 395: 125160. |
[31] | WANG B, XI P, SHAN C, et al. In situ growth of ceria on cerium- nitrogen-carbon as promoter for oxygen evolution reaction. Advanced Materials Interfaces, 2017, 4(13):1700272. |
[32] | WANG Y, TAO S, LIN H, et al. NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst. RSC Advances, 2020, 10(55):33475. |
[33] | MAHALA C, DEVI SHARMA M, BASU M. Fe-doped nickel hydroxide/nickel oxyhydroxide function as an efficient catalyst for the oxygen evolution reaction. ChemElectroChem, 2019, 6(13):3488. |
[1] | 夏天, 孟燮, 骆婷, 占忠亮. 固体氧化物燃料电池LaxSr2-3x/2Fe1.5Ni0.1Mo0.4O6-δ阳极性能研究[J]. 无机材料学报, 2020, 35(5): 617-622. |
[2] | 刘建哲, 郭鹏飞. VS2 纳米片: 一种十分有潜力的锂电池阳极材料[J]. 无机材料学报, 2015, 30(12): 1339-1344. |
[3] | 常希望, 陈 宁, 王丽君, 卞刘振, 李福燊, 周国治. 固体氧化物燃料电池阳极材料成份的优化规律[J]. 无机材料学报, 2015, 30(10): 1043-1048. |
[4] | 刘亚迪, 袁 春, 周玉存, 邹 杰, 辛显双, 王绍荣. Ni浸渍的LST-SSZ复合阳极及其直接甲烷固体氧化物燃料电池研究[J]. 无机材料学报, 2014, 29(11): 1121-1126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||