无机材料学报 ›› 2024, Vol. 39 ›› Issue (2): 225-232.DOI: 10.15541/jim20230188 CSTR: 32189.14.10.15541/jim20230188

所属专题: 【材料计算】计算材料(202409) 【信息功能】MAX层状材料、MXene及其他二维材料(202409)

• 研究论文 • 上一篇    

硫族MAX相硼化物的物相稳定性和性能预测

张宇晨1(), 陆知遥1, 赫晓东1, 宋广平1, 朱春城2, 郑永挺1, 柏跃磊1()   

  1. 1.哈尔滨工业大学 特种环境复合材料技术国家级重点实验室/复合材料与结构研究所, 哈尔滨 150080
    2.哈尔滨师范大学 化学与化工学院, 哈尔滨 150025
  • 收稿日期:2023-04-14 修回日期:2023-07-07 出版日期:2023-08-21 网络出版日期:2023-08-21
  • 通讯作者: 柏跃磊,教授. E-mail: baiyl@hit.edu.cn
  • 作者简介:张宇晨(2001-),男,本科生. E-mail: 1696409105@qq.com
  • 基金资助:
    国家自然科学基金面上项目(51972080);特种环境复合材料技术国家级重点实验室基金(JCKYS2022603C028)

Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides

ZHANG Yuchen1(), LU Zhiyao1, HE Xiaodong1, SONG Guangping1, ZHU Chuncheng2, ZHENG Yongting1, BAI Yuelei1()   

  1. 1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments/Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
    2. School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
  • Received:2023-04-14 Revised:2023-07-07 Published:2023-08-21 Online:2023-08-21
  • Contact: BAI Yuelei, professor. E-mail: baiyl@hit.edu.cn
  • About author:ZHANG Yuchen(2001-), male, undergraduate student. E-mail: 1696409105@qq.com
  • Supported by:
    National Natural Science Foundation of China(51972080);National Key Laboratory Fund of Special Environmental Composites Technology(JCKYS2022603C028)

摘要:

Zr2SB、Hf2SB、Zr2SeB、Hf2SeB、Hf2TeB都是近期发现的硫族MAX相硼化物, 与典型MAX相相比,具有明显不同的性质, 因此备受人们关注。本文采用第一性原理并结合“线性优化法”、键刚度模型和准简谐近似研究了MAX相硼化物(M = Zr, Hf; A = S, Se, Te)的物相稳定性、力学性能和热性能。理论分析结果与目前可用的实验结果一致。经热力学和本征稳定性分析后发现, 只有M2AB可以稳定存在。较短的M−A键与M−B键长使Hf系化合物的键刚度高于Zr系化合物, 这也同样导致Hf系化合物的硬度高于Zr系。随着A元素由S到Se再到Te, M−B与M−A键长逐渐增加, 键刚度减小导致弹性模量降低。而且, 这些化合物的体积模量取决于其平均化学键刚度。更加重要的是, 最弱键和最强键的刚度比(kmin/kmax)较高,显示这些MAX相硼化物不同于传统MAX相, 均呈本征脆性。考虑晶格振动(声子)和电子激发的贡献后计算得到M2AB等压热容及热膨胀系数(TEC), 均在300 K以下随温度升高先快速上升后上升速率逐渐降低, 这与其它MAX相类似。较低的键刚度导致Zr系MAX相硼化物的平均线热膨胀系数整体上高于Hf系, 而且在300~1300 K区间与大部分MAX和MAB相一致。

关键词: 第一性原理, MAX相硼化物, 物相稳定性, 力学行为, 热学性能

Abstract:

Zr2SB, Hf2SB, Zr2SeB, Hf2SeB, and Hf2TeB are all recently discovered S-group elements containing MAX-phase borides, which attract much attention since the MAX phase borides are significantly unlike the typical MAX phases. Here, the phase stability, mechanical properties and thermal properties of MAX phase borides (M = Zr, Hf, A = S, Se, Te) were studied by using first principles and "linear optimization method", bond stiffness model and quasi-simple harmonic approximation. The results of the theoretical analysis were consistent with the currently available experimental results. Only M2AB was found to be stable after thermodynamic and intrinsic stability analysis. The shorter M−A bond and M−B bond lengths cause bond stiffness of Hf lineage higher than that of Zr, which also leads to the higher hardness of Hf lineage compound than that of Zr. the A site element goes from S to Se and to Te, the bond lengths of M−B and M−A are gradually increased, which lead to decrease in the elastic modulus. Moreover, the bulk modulus of these compounds is determined by their average chemical bond stiffness. Importantly, the high kmin/kmax (stiffness ratio of the weakest and the strongest bonds) shows that these MAX phases are inherently brittle, different from conventional MAX phase. Including the contribution of lattice vibration (phonon) and electron excitation, the isobaric heat capacity and heat expansion coefficient of M2AB increase rapidly with increasing the temperature below 300 K and then the rise rate gradually decreases, similar to other MAX phases. Lower bond stiffness results in an overall higher TEC of MAX phase borides in the Zr lineage than in the Hf lineage. The TEC values of these compounds in the 300−1300 K interval are consistent with most of the MAX and MAB phases.

Key words: first-principle, MAX phase boride, phase stability, mechanical property, thermal property

中图分类号: