| [1] | 
																						 
											  NITTA N, WU F, LEE J T, et al. Li-ion battery materials: present and future. Materials Today, 2015,18(5):252-264.
											 											 | 
										
																													
																						| [2] | 
																						 
											 Battery Calendar Life Estimator Manual Modeling and Simulation, INL/EXT- 08015136,2012.
											 											 | 
										
																													
																						| [3] | 
																						 
											  XU K. Electrolytes and interfaces in Li-ion batteries and beyond. Chemical Reviews, 2014,114(23):11503-11618.
											 											 | 
										
																													
																						| [4] | 
																						 
											  BRYNGELSSON H, STJERNDAHL M, GUSTAFSSON T, et al. How dynamic is the SEI? Journal of Power Sources, 2007,174(2):970-975.
											 											 | 
										
																													
																						| [5] | 
																						 
											  LIU R R, DENG X, LIU X R, et al. Facet dependent SEI formation on LiNi0.5Mn1.5O4 cathode identified by in-situ single particle atomic force microscopy. Chemical Communications, 2014,50(99):15756-15759.
											 											 | 
										
																													
																						| [6] | 
																						 
											  EDSTR M K, GUSTAFSSON T, THOMAS J O. The cathode- electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004,50(2/3):397-403.
											 											 | 
										
																													
																						| [7] | 
																						 
											  PALAC N M R, DE G A. Why do batteries fail? Science, 2016,351(6273):1253292.
											 											 | 
										
																													
																						| [8] | 
																						 
											  EDDAHECH A, BRIAT O, VINASSA J M. Performance comparison of four lithium-ion battery technologies under calendar aging. Energy, 2015,84:542-550.
											 											 | 
										
																													
																						| [9] | 
																						 
											  HAN X, LU L, ZHENG Y, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation, 2019,1:100005.
											 											 | 
										
																													
																						| [10] | 
																						 
											  WATANABE S, KINOSHITA M, NAKURA K. Capacity fade of LiAylNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiAylNi1-x-yCoxO2 and LiCoO2 cathodes in cylindrical lithium-ion cell. Journal of Power Sources, 2014,247(2):412-422.
											 											 | 
										
																													
																						| [11] | 
																						 
											  KASSEM M, BERNARD J, REVEL R, et al. Calendar aging of a graphite/LiFePO4 cell. Journal of Power Sources, 2012,208(2):296-305.
											 											 | 
										
																													
																						| [12] | 
																						 
											  GROLLEAU S, DELAILLE A, GUALOUS H, et al. Calendar aging of commercial graphite/LiFePO4 cell-predicting capacity fade under time dependent storage conditions. Journal of Power Sources, 2014,255(6):450-458.
											 											 | 
										
																													
																						| [13] | 
																						 
											  THOMAS E V, BLOOM I, CHRISTOPHERSEN J P, et al. Rate-based degradation modeling of lithium-ion cells. Journal of Power Sources, 2012,206(206):378-382.
											 											 | 
										
																													
																						| [14] | 
																						 
											  LEKGOATHI M D S, VILAKAZI B M, WAGENER J B, et al. Decomposition kinetics of anhydrous and moisture exposed LiPF6 salts by thermogravimetry. Journal of Fluorine Chemistry, 2013,149(2):53-56.
											 											 | 
										
																													
																						| [15] | 
																						 
											  KAWAMURA T, OKADA S, YAMAKI J I. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. Journal of Power Sources, 2006,156(2):547-554.
											 											 | 
										
																													
																						| [16] | 
																						 
											  PINSON M B, BAZANT M Z. Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. Journal of the Electrochemical Society, 2012,160(2):A243-A250.
											 											 | 
										
																													
																						| [17] | 
																						 
											  CHUNG K Y, YOON W S, KIM K B, et al. Formation of an SEI on a LiMn2O4 cathode during room temperature charge-discharge cycling studied by soft X-ray absorption spectroscopy at the fluorine k-edge. Journal of Applied Electrochemistry, 2011,41(11):1295-1299.
											 											 | 
										
																													
																						| [18] | 
																						 
											  ABRAHAM D P, TWESTEN R D, BALASUBRAMANIAN M, et al. Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells. Journal of the Electrochemical Society, 2003,150(150):A1450-A1456.
											 											 | 
										
																													
																						| [19] | 
																						 
											  ABRAHAM D P, TWESTEN R D, BALASUBRAMANIAN M, et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells. Electrochemistry Communications, 2002,4(8):620-625.
											 											 | 
										
																													
																						| [20] | 
																						 
											  NIE M, CHALASANI D, ABRAHAM D P, et al. Lithium ion battery graphite solid electrolyte interface revealed by microscopy and spectroscopy. Journal of Physical Chemistry C, 2013,117(3):1257-1267.
											 											 | 
										
																													
																						| [21] | 
																						 
											  PELED E, MENKIN S. Review—SEI: past, present and future. Journal of the Electrochemical Society, 2017,164(7):A1703-A1719.
											 											 | 
										
																													
																						| [22] | 
																						 
											  GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode- electrolyte interface in Li-ion batteries: current understanding and new insights. The Journal of Physical Chemistry Letters, 2015,6(22):4653-4672.
											 											 | 
										
																													
																						| [23] | 
																						 
											  VERMA P, MAIRE P, NOV K P. A review of the features and analyses of the solid electrolyte interface in Li-ion batteries. Electrochimica Acta, 2010,55(22):6332-6341.
											 											 | 
										
																													
																						| [24] | 
																						 
											  NANDA J, YANG G, HOU T, et al. Unraveling the nanoscale heterogeneity of solid electrolyte interface using tip-enhanced Raman spectroscopy. Joule, 2019,3(8):2001-2019.
											 											 | 
										
																													
																						| [25] | 
																						 
											  AGUBRA V A, FERGUS J W. The formation and stability of the solid electrolyte interface on the graphite anode. Journal of Power Sources, 2014,268(268):153-162.
											 											 | 
										
																													
																						| [26] | 
																						 
											  HEISKANEN S K, KIM J, LUCHT B L. Generation and evolution of the solid electrolyte interface of lithium-ion batteries. Joule, 2019,3(10):2322-2333.
											 											 |